An Explicit Euler Scheme with Strong Rate of Convergence for Financial SDEs with Non-Lipschitz Coefficients

We consider the approximation of stochastic differential equations (SDEs) with non-Lipschitz drift or diffusion coefficients. We present a modified explicit Euler-Maruyama discretisation scheme that allows us to prove strong convergence, with a rate. Under some regularity and integrability conditions, we obtain the optimal strong error rate. We apply this scheme to SDEs widely used in the mathematical finance literature, including the Cox-Ingersoll-Ross~(CIR), the 3/2 and the Ait-Sahalia models, as well as a family of mean-reverting processes with locally smooth coefficients. We numerically illustrate the strong convergence of the scheme and demonstrate its efficiency in a multilevel Monte Carlo setting.

[1]  P. Kloeden,et al.  Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients , 2010, 1010.3756.

[2]  M. Hutzenthaler,et al.  Strong convergence rates and temporal regularity for Cox-Ingersoll-Ross processes and Bessel processes with accessible boundaries , 2014, 1403.6385.

[3]  M. Bossy,et al.  Strong convergence of the symmetrized Milstein scheme for some CEV-like SDEs , 2015, Bernoulli.

[4]  L. Szpruch,et al.  Numerical simulation of a strongly nonlinear Ait-Sahalia-type interest rate model , 2011 .

[5]  Lukasz Szpruch,et al.  Multilevel Monte Carlo methods for applications in finance , 2012, 1212.1377.

[6]  T. Alderweireld,et al.  A Theory for the Term Structure of Interest Rates , 2004, cond-mat/0405293.

[7]  Aurélien Alfonsi,et al.  On the discretization schemes for the CIR (and Bessel squared) processes , 2005, Monte Carlo Methods Appl..

[8]  I. Gyöngy A note on Euler's Approximations , 1998 .

[9]  Mireille Bossy,et al.  Euler scheme for SDEs with non-Lipschitz diffusion coefficient: strong convergence , 2006 .

[10]  Aurélien Alfonsi,et al.  Strong order one convergence of a drift implicit Euler scheme: Application to the CIR process , 2013 .

[11]  N. V. Krylov,et al.  A Simple Proof of the Existence of a Solution of Itô’s Equation with Monotone Coefficients , 1991 .

[12]  Desmond J. Higham,et al.  Analysing multi-level Monte Carlo for options with non-globally Lipschitz payoff , 2009, Finance Stochastics.

[13]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[14]  M. Hutzenthaler,et al.  Numerical Approximations of Stochastic Differential Equations With Non-globally Lipschitz Continuous Coefficients , 2012, 1203.5809.

[15]  Andreas Neuenkirch,et al.  First order strong approximations of scalar SDEs with values in a domain , 2012, 1209.0390.

[16]  Andreas Neuenkirch,et al.  CONVERGENCE OF NUMERICAL METHODS FOR STOCHASTIC DIFFERENTIAL EQUATIONS IN MATHEMATICAL FINANCE , 2012, 1204.6620.

[17]  Andreas Neuenkirch,et al.  First order strong approximations of scalar SDEs defined in a domain , 2014, Numerische Mathematik.

[18]  M. Giles Improved Multilevel Monte Carlo Convergence using the Milstein Scheme , 2008 .

[19]  S. Ross,et al.  The valuation of options for alternative stochastic processes , 1976 .

[20]  Andrew M. Stuart,et al.  Strong Convergence of Euler-Type Methods for Nonlinear Stochastic Differential Equations , 2002, SIAM J. Numer. Anal..

[21]  Dai Taguchi,et al.  Strong rate of convergence for the Euler-Maruyama approximation of stochastic differential equations with irregular coefficients , 2013, Math. Comput..

[22]  Klaus E. Schmitz Abe Pricing exotic options using MSL-MC , 2011 .

[23]  D. Brigo,et al.  Interest Rate Models - Theory and Practice: With Smile, Inflation and Credit , 2001 .

[24]  L. Szpruch,et al.  An Euler-type method for the strong approximation of the Cox–Ingersoll–Ross process , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[25]  Miklós Rásonyi,et al.  A note on Euler approximations for SDEs with Hölder continuous diffusion coefficients , 2011 .

[26]  Stefano De Marco,et al.  Smoothness and asymptotic estimates of densities for SDEs with locally smooth coefficients and applications to square root-type diffusions , 2011 .

[27]  S. Sabanis Euler approximations with varying coefficients: The case of superlinearly growing diffusion coefficients , 2013, 1308.1796.

[28]  Yacine Ait-Sahalia Testing Continuous-Time Models of the Spot Interest Rate , 1995 .

[29]  P. Kloeden,et al.  Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[30]  T. Faniran Numerical Solution of Stochastic Differential Equations , 2015 .

[31]  Liqing Yan The Euler scheme with irregular coefficients , 2002 .

[32]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[33]  D. Brigo,et al.  Interest Rate Models , 2001 .

[34]  Michael B. Giles,et al.  Computing Greeks Using Multilevel Path Simulation , 2012 .

[35]  Peter E. Kloeden,et al.  Pathwise approximation of stochastic differential equations on domains: higher order convergence rates without global Lipschitz coefficients , 2009, Numerische Mathematik.

[36]  Mireille Bossy,et al.  An efficient discretisation scheme for one dimensional SDEs with a diffusion coefficient function of the form |x|^a, a in [1/2,1) , 2006 .

[37]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[38]  W. Feller Diffusion processes in one dimension , 1954 .

[39]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[40]  S. Sabanis A note on tamed Euler approximations , 2013, 1303.5504.