An Explicit Euler Scheme with Strong Rate of Convergence for Financial SDEs with Non-Lipschitz Coefficients
暂无分享,去创建一个
Antoine Jacquier | Jean-François Chassagneux | Ivo Mihaylov | A. Jacquier | I. Mihaylov | J. Chassagneux
[1] P. Kloeden,et al. Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients , 2010, 1010.3756.
[2] M. Hutzenthaler,et al. Strong convergence rates and temporal regularity for Cox-Ingersoll-Ross processes and Bessel processes with accessible boundaries , 2014, 1403.6385.
[3] M. Bossy,et al. Strong convergence of the symmetrized Milstein scheme for some CEV-like SDEs , 2015, Bernoulli.
[4] L. Szpruch,et al. Numerical simulation of a strongly nonlinear Ait-Sahalia-type interest rate model , 2011 .
[5] Lukasz Szpruch,et al. Multilevel Monte Carlo methods for applications in finance , 2012, 1212.1377.
[6] T. Alderweireld,et al. A Theory for the Term Structure of Interest Rates , 2004, cond-mat/0405293.
[7] Aurélien Alfonsi,et al. On the discretization schemes for the CIR (and Bessel squared) processes , 2005, Monte Carlo Methods Appl..
[8] I. Gyöngy. A note on Euler's Approximations , 1998 .
[9] Mireille Bossy,et al. Euler scheme for SDEs with non-Lipschitz diffusion coefficient: strong convergence , 2006 .
[10] Aurélien Alfonsi,et al. Strong order one convergence of a drift implicit Euler scheme: Application to the CIR process , 2013 .
[11] N. V. Krylov,et al. A Simple Proof of the Existence of a Solution of Itô’s Equation with Monotone Coefficients , 1991 .
[12] Desmond J. Higham,et al. Analysing multi-level Monte Carlo for options with non-globally Lipschitz payoff , 2009, Finance Stochastics.
[13] S. Heston. A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .
[14] M. Hutzenthaler,et al. Numerical Approximations of Stochastic Differential Equations With Non-globally Lipschitz Continuous Coefficients , 2012, 1203.5809.
[15] Andreas Neuenkirch,et al. First order strong approximations of scalar SDEs with values in a domain , 2012, 1209.0390.
[16] Andreas Neuenkirch,et al. CONVERGENCE OF NUMERICAL METHODS FOR STOCHASTIC DIFFERENTIAL EQUATIONS IN MATHEMATICAL FINANCE , 2012, 1204.6620.
[17] Andreas Neuenkirch,et al. First order strong approximations of scalar SDEs defined in a domain , 2014, Numerische Mathematik.
[18] M. Giles. Improved Multilevel Monte Carlo Convergence using the Milstein Scheme , 2008 .
[19] S. Ross,et al. The valuation of options for alternative stochastic processes , 1976 .
[20] Andrew M. Stuart,et al. Strong Convergence of Euler-Type Methods for Nonlinear Stochastic Differential Equations , 2002, SIAM J. Numer. Anal..
[21] Dai Taguchi,et al. Strong rate of convergence for the Euler-Maruyama approximation of stochastic differential equations with irregular coefficients , 2013, Math. Comput..
[22] Klaus E. Schmitz Abe. Pricing exotic options using MSL-MC , 2011 .
[23] D. Brigo,et al. Interest Rate Models - Theory and Practice: With Smile, Inflation and Credit , 2001 .
[24] L. Szpruch,et al. An Euler-type method for the strong approximation of the Cox–Ingersoll–Ross process , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[25] Miklós Rásonyi,et al. A note on Euler approximations for SDEs with Hölder continuous diffusion coefficients , 2011 .
[26] Stefano De Marco,et al. Smoothness and asymptotic estimates of densities for SDEs with locally smooth coefficients and applications to square root-type diffusions , 2011 .
[27] S. Sabanis. Euler approximations with varying coefficients: The case of superlinearly growing diffusion coefficients , 2013, 1308.1796.
[28] Yacine Ait-Sahalia. Testing Continuous-Time Models of the Spot Interest Rate , 1995 .
[29] P. Kloeden,et al. Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[30] T. Faniran. Numerical Solution of Stochastic Differential Equations , 2015 .
[31] Liqing Yan. The Euler scheme with irregular coefficients , 2002 .
[32] Paul Glasserman,et al. Monte Carlo Methods in Financial Engineering , 2003 .
[33] D. Brigo,et al. Interest Rate Models , 2001 .
[34] Michael B. Giles,et al. Computing Greeks Using Multilevel Path Simulation , 2012 .
[35] Peter E. Kloeden,et al. Pathwise approximation of stochastic differential equations on domains: higher order convergence rates without global Lipschitz coefficients , 2009, Numerische Mathematik.
[36] Mireille Bossy,et al. An efficient discretisation scheme for one dimensional SDEs with a diffusion coefficient function of the form |x|^a, a in [1/2,1) , 2006 .
[37] Michael B. Giles,et al. Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..
[38] W. Feller. Diffusion processes in one dimension , 1954 .
[39] Xiongzhi Chen. Brownian Motion and Stochastic Calculus , 2008 .
[40] S. Sabanis. A note on tamed Euler approximations , 2013, 1303.5504.