Impact heat driven volatile redistribution at Occator crater on Ceres as a comparative planetary process

[1]  C. Russell,et al.  The varied sources of faculae-forming brines in Ceres’ Occator crater emplaced via hydrothermal brine effusion , 2020, Nature Communications.

[2]  C. Russell,et al.  Post-impact cryo-hydrologic formation of small mounds and hills in Ceres’s Occator crater , 2020, Nature Geoscience.

[3]  E. Cloutis,et al.  Recent cryovolcanic activity at Occator crater on Ceres , 2020, Nature Astronomy.

[4]  Manish R. Patel,et al.  Experimental evidence for lava-like mud flows under Martian surface conditions , 2020, Nature Geoscience.

[5]  M. Hesse,et al.  Impact-driven mobilization of deep crustal brines on dwarf planet Ceres , 2019, Nature Astronomy.

[6]  F. Preusker,et al.  The central pit and dome at Cerealia Facula bright deposit and floor deposits in Occator crater, Ceres: Morphology, comparisons and formation , 2019, Icarus.

[7]  D. Buczkowski,et al.  A Possible Brine Reservoir Beneath Occator Crater: Thermal and Compositional Evolution and Formation of the Cerealia Dome and Vinalia Faculae , 2019, Icarus.

[8]  R. Jaumann,et al.  The various ages of Occator crater, Ceres: Results of a comprehensive synthesis approach , 2019, Icarus.

[9]  C. Russell,et al.  Ceres’ Occator crater and its faculae explored through geologic mapping , 2019, Icarus.

[10]  Brandon C. Johnson,et al.  Post-impact thermal structure and cooling timescales of Occator crater on asteroid 1 Ceres , 2019, Icarus.

[11]  M. Hesse,et al.  Conditions for the Long‐Term Preservation of a Deep Brine Reservoir in Ceres , 2019, Geophysical Research Letters.

[12]  M. Hesse,et al.  Thermal Evolution of the Impact‐Induced Cryomagma Chamber Beneath Occator Crater on Ceres , 2019, Geophysical Research Letters.

[13]  J. E. Riedel,et al.  High-resolution shape model of Ceres from stereophotoclinometry using Dawn Imaging Data , 2019, Icarus.

[14]  Tod R. Lauer,et al.  Basins, fractures and volcanoes: Global cartography and topography of Pluto from New Horizons , 2018, Icarus.

[15]  Harald Hiesinger,et al.  Dating very young planetary surfaces from crater statistics: A review of issues and challenges , 2018 .

[16]  D. Crown,et al.  A Global Inventory of Ice‐Related Morphological Features on Dwarf Planet Ceres: Implications for the Evolution and Current State of the Cryosphere , 2018, Journal of Geophysical Research: Planets.

[17]  C. Russell,et al.  Ceres’ Ezinu quadrangle: a heavily cratered region with evidence for localized subsurface water ice and the context of Occator crater , 2017, Icarus.

[18]  Christopher T. Russell,et al.  Constraints on Ceres' Internal Structure and Evolution From Its Shape and Gravity Measured by the Dawn Spacecraft , 2017 .

[19]  C. Russell,et al.  The interior structure of Ceres as revealed by surface topography , 2017 .

[20]  T. Guillot,et al.  Water and Volatiles in the Outer Solar System , 2017 .

[21]  C. Russell,et al.  Pitted terrains on (1) Ceres and implications for shallow subsurface volatile distribution , 2017, Geophysical research letters.

[22]  D. Crown,et al.  The geology of the occator quadrangle of dwarf planet Ceres: Floor-fractured craters and other geomorphic evidence of cryomagmatism , 2017, Icarus.

[23]  R. Jaumann,et al.  Tectonic analysis of fracturing associated with occator crater , 2017, Icarus.

[24]  Carle M. Pieters,et al.  Geological mapping of impact melt deposits at lunar complex craters Jackson and Tycho: Morphologic and topographic diversity and relation to the cratering process , 2017 .

[25]  R. Jaumann,et al.  Cryogenic flow features on Ceres: Implications for crater‐related cryovolcanism , 2016 .

[26]  C. Russell,et al.  The geomorphology of Ceres , 2016, Science.

[27]  F. G. Carrozzo,et al.  Distribution of phyllosilicates on the surface of Ceres , 2016, Science.

[28]  C. Russell,et al.  Composition and structure of the shallow subsurface of Ceres revealed by crater morphology , 2016 .

[29]  C. Russell,et al.  The missing large impact craters on Ceres , 2016, Nature Communications.

[30]  R. Mugnuolo,et al.  Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres , 2016, Nature.

[31]  C. Russell,et al.  Distribution of phyllosilicates on Ceres , 2016 .

[32]  C. Russell,et al.  Impact Cratering on the Small Planets Ceres and Vesta: S-C Transitions, Central Pits, and the Origin of Bright Spots , 2016 .

[33]  R. Jaumann,et al.  Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres , 2015, Nature.

[34]  Konatam Tejaswi,et al.  A Review of Issues and Challenges in Wireless Technology , 2015 .

[35]  P. Mouginis-Mark Cratering on Mars with almost no atmosphere or volatiles: Pangboche crater , 2015 .

[36]  Clark R. Chapman,et al.  The variability of crater identification among expert and community crater analysts , 2014, 1404.1334.

[37]  V. Sharpton Outcrops on lunar crater rims: Implications for rim construction mechanisms, ejecta volumes and excavation depths , 2014 .

[38]  Charles S. Cockell,et al.  Impact-generated hydrothermal systems on Earth and Mars , 2013 .

[39]  D. Vokrouhlický,et al.  Black rain: The burial of the Galilean satellites in irregular satellite debris , 2013 .

[40]  C. Russell,et al.  Pitted Terrain on Vesta and Implications for the Presence of Volatiles , 2012, Science.

[41]  P. Mouginis-Mark,et al.  Origin of small pits in martian impact craters , 2012 .

[42]  A. McEwen,et al.  Widespread crater-related pitted materials on Mars: Further evidence for the role of target volatiles during the impact process , 2012 .

[43]  R. Jaumann,et al.  The Violent Collisional History of Asteroid 4 Vesta , 2012, Science.

[44]  J. Mustard Sequestration of Volatiles in the Martian Crust Through Hydrated Minerals , 2011, Volatiles in the Martian Crust.

[45]  M. Bourke,et al.  Travertine and tufa from Dalhousie Springs (Australia)—Implications for recognizing Martian springs , 2011 .

[46]  A. McEwen,et al.  New insight into lunar impact melt mobility from the LRO camera , 2010 .

[47]  J. Spray,et al.  The Manicouagan impact structure as a terrestrial analogue site for lunar and martian planetary science , 2010 .

[48]  Harry Y. McSween,et al.  Elemental Composition of the Martian Crust , 2009, Science.

[49]  M. Malin,et al.  Sub-kilometer fans in Mojave Crater, Mars , 2008 .

[50]  N. Izenberg,et al.  Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument , 2008, Nature.

[51]  T. Encrenaz,et al.  Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data , 2006, Science.

[52]  J. R. Mackay,et al.  Pingo Growth and collapse, Tuktoyaktuk Peninsula Area, Western Arctic Coast, Canada: a long-term field study , 2002 .

[53]  J. Anderson,et al.  Shape, Mean Radius, Gravity Field, and Interior Structure of Callisto , 2001 .

[54]  R. Clark,et al.  Modeling the reflectance spectrum of Callisto 0.25 to 4.1 μm , 1991 .

[55]  R. J. Floran,et al.  Manicouagan Impact Melt, Quebec, 1, Stratigraphy, petrology, and chemistry , 1978 .

[56]  T. Prettyman,et al.  FRACTURES AND FURROWS ON OCCATOR’S LOBATE FLOWS: MORPHOLOGIC EVIDENCE OF ICE CONTENT , 2020 .

[57]  R. Jaumann,et al.  Bright carbonate surfaces on Ceres as remnants of salt-rich water fountains , 2019, Icarus.

[58]  C. Russell,et al.  The Distribution of Impact Ejecta on Ceres , 2017 .

[59]  P. Mouginis-Mark,et al.  Tooting crater: Geology and geomorphology of the archetype large, fresh, impact crater on Mars , 2012 .

[60]  M. Naumov Impact-Generated Hydrothermal Systems: Data from Popigai, Kara, and Puchezh-Katunki Impact Structures , 2002 .

[61]  D. Gault,et al.  Impact cratering experiments in Bingham materials and the morphology of craters on Mars and Ganymede , 1982 .