Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks

Abstract Reducing anthropogenic CO 2 emission and lowering the concentration of greenhouse gases in the atmosphere has quickly become one of the most urgent environmental issues of our age. Carbon capture and storage (CCS) is one option for reducing these harmful CO 2 emissions. While a variety of technologies and methods have been developed, the separation of CO 2 from gas streams is still a critical issue. Apart from establishing new techniques, the exploration of capture materials with high separation performance and low capital cost are of paramount importance. Metal-organic frameworks (MOFs), a new class of crystalline porous materials constructed by metal-containing nodes bonded to organic bridging ligands hold great potential as adsorbents or membrane materials in gas separation. In this paper, we review the research progress (from experimental results to molecular simulations) in MOFs for CO 2 adsorption, storage, and separations (adsorptive separation and membrane-based separation) that are directly related to CO 2 capture.

[1]  Todd Flach,et al.  The acceptability of CO2 capture and storage (CCS) in Europe: An assessment of the key determining factors: Part 1. Scientific, technical and economic dimensions , 2009 .

[2]  Kyriakos C. Stylianou,et al.  An Adaptable Peptide-Based Porous Material , 2010, Science.

[3]  B. Metz IPCC special report on carbon dioxide capture and storage , 2005 .

[4]  Nathaniel L Rosi,et al.  Tuning MOF CO2 adsorption properties via cation exchange. , 2010, Journal of the American Chemical Society.

[5]  Michael Tsapatsis,et al.  A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules , 2001, Nature.

[6]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[7]  Chongli Zhong,et al.  Molecular simulation of separation of CO2 from flue gases in CU‐BTC metal‐organic framework , 2007 .

[8]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[9]  Seda Keskin,et al.  Can metal-organic framework materials play a useful role in large-scale carbon dioxide separations? , 2010, ChemSusChem.

[10]  Jianwen Jiang,et al.  Upgrade of natural gas in rhozeolite-like metal–organic framework and effect of water: a computational study , 2009 .

[11]  Richard Blom,et al.  Application of metal–organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide , 2009 .

[12]  Dianne E. Wiley,et al.  Reducing the Cost of CO2 Capture from Flue Gases Using Membrane Technology , 2008 .

[13]  S. Qiu,et al.  Robust metal-organic framework enforced by triple-framework interpenetration exhibiting high H2 storage density. , 2008, Inorganic chemistry.

[14]  R. Masel,et al.  Grain Boundary Defect Elimination in a Zeolite Membrane by Rapid Thermal Processing , 2009, Science.

[15]  Omar M Yaghi,et al.  Metal insertion in a microporous metal-organic framework lined with 2,2'-bipyridine. , 2010, Journal of the American Chemical Society.

[16]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[17]  S. Kitagawa,et al.  A flexible interpenetrating coordination framework with a bimodal porous functionality. , 2007, Nature materials.

[18]  P. Kollman,et al.  A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .

[19]  Fangyi Liang,et al.  Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation , 2010 .

[20]  S. Qiu,et al.  "Twin copper source" growth of metal-organic framework membrane: Cu(3)(BTC)(2) with high permeability and selectivity for recycling H(2). , 2009, Journal of the American Chemical Society.

[21]  Wen-guo Wang,et al.  A flexible pro-porous coordination polymer: non-conventional synthesis and separation properties towards CO(2)/CH(4) mixtures. , 2010, Chemistry.

[22]  Seth M. Cohen,et al.  Moisture-resistant and superhydrophobic metal-organic frameworks obtained via postsynthetic modification. , 2010, Journal of the American Chemical Society.

[23]  Wenbin Lin,et al.  Enantioselective catalysis with homochiral metal-organic frameworks. , 2009, Chemical Society reviews.

[24]  R. B. Slimane,et al.  Progress in carbon dioxide separation and capture: a review. , 2008, Journal of environmental sciences.

[25]  Krista S. Walton,et al.  Molecular simulation of adsorption sites of light gases in the metal-organic framework IRMOF-1 , 2007 .

[26]  Hong‐Cai Zhou,et al.  A mesh-adjustable molecular sieve for general use in gas separation. , 2007, Angewandte Chemie.

[27]  B. Smit,et al.  Carbon dioxide capture: prospects for new materials. , 2010, Angewandte Chemie.

[28]  Xian‐Ming Zhang Hydro(solvo)thermal in situ ligand syntheses , 2005 .

[29]  A. Torrisi,et al.  Impact of ligands on CO2 adsorption in metal-organic frameworks: first principles study of the interaction of CO2 with functionalized benzenes. I. Inductive effects on the aromatic ring. , 2009, The Journal of chemical physics.

[30]  Clem E. Powell,et al.  Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases , 2006 .

[31]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[32]  W. Goddard,et al.  High H2 Storage of Hexagonal Metal−Organic Frameworks from First-Principles-Based Grand Canonical Monte Carlo Simulations , 2008 .

[33]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[34]  J. Jegal,et al.  Coordination Compound Molecular Sieve Membranes , 2005 .

[35]  S. Qiu,et al.  New prototype isoreticular metal-organic framework Zn(4)O(FMA)(3) for gas storage. , 2009, Inorganic chemistry.

[36]  A. Fletcher,et al.  Adsorption dynamics of gases and vapors on the nanoporous metal organic framework material Ni2(4,4'-bipyridine)3(NO3)4: guest modification of host sorption behavior. , 2001, Journal of the American Chemical Society.

[37]  M. Allendorf,et al.  Metal‐Organic Frameworks: A Rapidly Growing Class of Versatile Nanoporous Materials , 2011, Advanced materials.

[38]  Wenchuan Wang,et al.  Metal-organic frameworks with incorporated carbon nanotubes: improving carbon dioxide and methane storage capacities by lithium doping. , 2011, Angewandte Chemie.

[39]  C. Serre,et al.  A multidisciplinary approach to understanding sorption induced breathing in the metal organic framework MIL53(Cr) , 2007 .

[40]  Chongli Zhong,et al.  Effects of the side pockets on gas separation in metal-organic framework Cu-BTC: a molecular simulation study , 2009 .

[41]  C. Serre,et al.  Synthesis of MIL-102, a chromium carboxylate metal-organic framework, with gas sorption analysis. , 2006, Journal of the American Chemical Society.

[42]  Daqiang Yuan,et al.  Enhancing H2 uptake by "close-packing" alignment of open copper sites in metal-organic frameworks. , 2008, Angewandte Chemie.

[43]  Jun Liu,et al.  Gas-Induced Expansion and Contraction of a Fluorinated Metal−Organic Framework , 2010 .

[44]  Omar M. Yaghi,et al.  Metal-organic frameworks: a new class of porous materials , 2004 .

[45]  Omar M Yaghi,et al.  Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). , 2007, Journal of the American Chemical Society.

[46]  Tapas Kumar Maji,et al.  Guest-induced asymmetry in a metal-organic porous solid with reversible single-crystal-to-single-crystal structural transformation. , 2005, Journal of the American Chemical Society.

[47]  M. O'keeffe,et al.  Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs , 2008, Nature.

[48]  Wei Zhou,et al.  Metal-organic frameworks with exceptionally high methane uptake: where and how is methane stored? , 2010, Chemistry.

[49]  Dan Zhao,et al.  Potential applications of metal-organic frameworks , 2009 .

[50]  A. Abdel-Fattah,et al.  Storage and separation applications of nanoporous metal–organic frameworks , 2010 .

[51]  P. Kollman,et al.  Atomic charges derived from semiempirical methods , 1990 .

[52]  J. Atwood,et al.  Flexible metal-organic supramolecular isomers for gas separation. , 2010, Chemical communications.

[53]  J. Sauer,et al.  Treating dispersion effects in extended systems by hybrid MP2:DFT calculations--protonation of isobutene in zeolite ferrierite. , 2006, Physical chemistry chemical physics : PCCP.

[54]  C. Serre,et al.  Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. , 2009, Chemical Society reviews.

[55]  Easir A Khan,et al.  Synthesis of continuous MOF-5 membranes on porous α-alumina substrates , 2009 .

[56]  W. A. Poe,et al.  Handbook of Natural Gas Transmission and Processing , 2006 .

[57]  Bo Feng,et al.  Screening of CO2 adsorbing materials for zero emission power generation systems , 2007 .

[58]  H. Uchida,et al.  Molecular dynamics simulation of diffusion coefficients of naphthalene and 2-naphthol in supercritical carbon dioxide , 1997 .

[59]  Rajamani Krishna,et al.  Comment on comparative molecular simulation study of CO2/N2 and CH4/N2 separation in zeolites and metal-organic frameworks. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[60]  Jianwen Jiang,et al.  Unprecedentedly high selective adsorption of gas mixtures in rho zeolite-like metal-organic framework: a molecular simulation study. , 2009, Journal of the American Chemical Society.

[61]  T. Uemura,et al.  Polymerization reactions in porous coordination polymers. , 2009, Chemical Society reviews.

[62]  M. Kanatzidis,et al.  An interpenetrated framework material with hysteretic CO(2) uptake. , 2010, Chemistry.

[63]  C. Serre,et al.  Evidence of CO2 molecule acting as an electron acceptor on a nanoporous metal–organic-framework MIL-53 or Cr3+(OH)(O2C–C6H4–CO2) , 2007 .

[64]  Krista S. Walton,et al.  Gas Adsorption Study on Mesoporous Metal−Organic Framework UMCM-1 , 2010 .

[65]  Jianwen Jiang Charged soc Metal-Organic Framework for High-Efficacy H2 Adsorption and Syngas Purification: Atomistic Simulation Study , 2009 .

[66]  Easir A Khan,et al.  Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture , 2010 .

[67]  B. Freeman,et al.  MATERIALS SELECTION GUIDELINES FOR MEMBRANES THAT REMOVE CO2 FROM GAS MIXTURES , 2005 .

[68]  T. Remsungnen,et al.  The optimal binding sites of CH4 and CO2 molecules on the metal-organic framework MOF-5: ONIOM calculations , 2008 .

[69]  A. Ghoufi,et al.  Co-adsorption and separation of CO2-CH4 mixtures in the highly flexible MIL-53(Cr) MOF. , 2009, Journal of the American Chemical Society.

[70]  Jin-soo Seo,et al.  Hysteretic Gas Sorption in a Microporous Metal–Organic Framework with Nonintersecting 3D Channels , 2009 .

[71]  C. Serre,et al.  Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. , 2005, Journal of the American Chemical Society.

[72]  Costas Tsouris,et al.  Separation of CO2 from Flue Gas: A Review , 2005 .

[73]  G. Shimizu,et al.  An amine-functionalized metal organic framework for preferential CO(2) adsorption at low pressures. , 2009, Chemical communications.

[74]  C. Serre,et al.  Self and transport diffusivity of CO2 in the metal-organic framework MIL-47(V) explored by quasi-elastic neutron scattering experiments and molecular dynamics simulations. , 2010, ACS nano.

[75]  Craig M. Brown,et al.  Hydrogen storage and carbon dioxide capture in an iron-based sodalite-type metal–organic framework (Fe-BTT) discovered via high-throughput methods , 2010 .

[76]  P. Scovazzo,et al.  Long-term, continuous mixed-gas dry fed CO2/CH4 and CO2/N2 separation performance and selectivities for room temperature ionic liquid membranes , 2009 .

[77]  H. Noguchi,et al.  Elastic layer-structured metal organic frameworks (ELMs). , 2009, Journal of colloid and interface science.

[78]  Jianwen Jiang,et al.  Density functional theory for adsorption of gas mixtures in metal-organic frameworks. , 2010, The journal of physical chemistry. B.

[79]  Y. Hwang,et al.  Gas‐Sorption Selectivity of CUK‐1: A Porous Coordination Solid Made of Cobalt(II) and Pyridine‐2,4‐ Dicarboxylic Acid , 2007 .

[80]  C. Lamberti,et al.  Adsorption properties of HKUST-1 toward hydrogen and other small molecules monitored by IR. , 2007, Physical chemistry chemical physics : PCCP.

[81]  D. D’Alessandro,et al.  Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine. , 2009, Journal of the American Chemical Society.

[82]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[83]  C. D. Collier,et al.  Ultramicroporous metal-organic framework based on 9,10-anthracenedicarboxylate for selective gas adsorption. , 2007, Inorganic chemistry.

[84]  A. Harris,et al.  Microwave enhanced synthesis of MOF-5 and its CO2 capture ability at moderate temperatures across multiple capture and release cycles , 2010 .

[85]  Michael O’Keeffe,et al.  Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.

[86]  Tatsuo C. Kobayashi,et al.  Kinetic gate-opening process in a flexible porous coordination polymer. , 2008, Angewandte Chemie.

[87]  R. Snurr,et al.  Effects of molecular siting and adsorbent heterogeneity on the ideality of adsorption equilibria. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[88]  D. Zhao,et al.  A Microporous Metal-Organic Framework with Immobilized -OH Functional Groups within the Pore Surfaces for Selective Gas Sorption , 2010 .

[89]  M. Fröba,et al.  New highly porous aluminium based metal-organic frameworks: Al(OH)(ndc) (ndc = 2,6-naphthalene dicarboxylate) and Al(OH)(bpdc) (bpdc = 4,4′-biphenyl dicarboxylate) , 2009 .

[90]  Carlos A. Grande,et al.  Challenges of electric swing adsorption for CO(2) capture. , 2010, ChemSusChem.

[91]  Seth M. Cohen,et al.  Postsynthetic modification of metal-organic frameworks. , 2009, Chemical Society reviews.

[92]  D. Sholl,et al.  Rapid transport of gases in carbon nanotubes. , 2002, Physical review letters.

[93]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[94]  Christopher W. Jones,et al.  Materials and processes for carbon capture and sequestration. , 2010, ChemSusChem.

[95]  Eric J. Hurtado,et al.  A triply interpenetrated microporous metal-organic framework for selective sorption of gas molecules. , 2007, Inorganic chemistry.

[96]  Peter G. Boyd,et al.  Direct Observation and Quantification of CO2 Binding Within an Amine-Functionalized Nanoporous Solid , 2010, Science.

[97]  Wei-Qiao Deng,et al.  Improved designs of metal-organic frameworks for hydrogen storage. , 2007, Angewandte Chemie.

[98]  Takahiro Kuroda,et al.  Formation of a Y-Type Zeolite Membrane on a Porous α-Alumina Tube for Gas Separation , 1997 .

[99]  Chongli Zhong,et al.  Understanding gas separation in metal–organic frameworks using computer modeling , 2010 .

[100]  J. Navarro,et al.  Cation-exchange porosity tuning in anionic metal-organic frameworks for the selective separation of gases and vapors and for catalysis. , 2010, Angewandte Chemie.

[101]  R. Snurr,et al.  Using molecular simulation to characterise metal-organic frameworks for adsorption applications. , 2009, Chemical Society reviews.

[102]  D. Sholl,et al.  Diffusivities of Ar and Ne in Carbon Nanotubes , 2003 .

[103]  Colin A. Scholes,et al.  Effects of Minor Components in Carbon Dioxide Capture Using Polymeric Gas Separation Membranes , 2009 .

[104]  J. Ferraris,et al.  Mixed-matrix membranes containing MOF-5 for gas separations , 2009 .

[105]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[106]  François-Xavier Coudert,et al.  Prediction of breathing and gate-opening transitions upon binary mixture adsorption in metal-organic frameworks. , 2009, Journal of the American Chemical Society.

[107]  Doros N. Theodorou,et al.  Quasi-elastic neutron scattering and molecular dynamics simulation as complementary techniques for studying diffusion in zeolites , 2007 .

[108]  Badie I. Morsi,et al.  Progress in carbon dioxide capture and separation research for gasification-based power generation point sources , 2008 .

[109]  Joerg R. Jinschek,et al.  Scalable fabrication of carbon nanotube/polymer nanocomposite membranes for high flux gas transport. , 2007, Nano letters.

[110]  Patrick Ryan,et al.  Separation of CO2 from CH4 using mixed-ligand metal-organic frameworks. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[111]  Alírio E. Rodrigues,et al.  Metal Organic Framework Adsorbent for Biogas Upgrading , 2008 .

[112]  Xin Xu,et al.  New alkali doped pillared carbon materials designed to achieve practical reversible hydrogen storage for transportation. , 2004, Physical review letters.

[113]  S. Tsang,et al.  Recent advances in CO2 capture and utilization. , 2008, ChemSusChem.

[114]  B. Bockrath,et al.  Hysteresis in the physisorption of CO2 and N2 in a flexible pillared layer nickel cyanide. , 2008, Journal of the American Chemical Society.

[115]  Jerry Meldon,et al.  Advanced Post-Combustion CO 2 Capture , 2009 .

[116]  Guodong Qian,et al.  Metal-organic frameworks with functional pores for recognition of small molecules. , 2010, Accounts of chemical research.

[117]  A. Ghoufi,et al.  Hybrid Monte Carlo Simulations Combined with a Phase Mixture Model to Predict the Structural Transitions of a Porous Metal−Organic Framework Material upon Adsorption of Guest Molecules , 2010 .

[118]  D. Vos,et al.  Separation of CO2/CH4 mixtures with the MIL-53(Al) metal–organic framework , 2009 .

[119]  R. Baker Future directions of membrane gas separation technology , 2002 .

[120]  C. Serre,et al.  High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[121]  Alexander M. Spokoyny,et al.  Chemical reduction of a diimide based porous polymer for selective uptake of carbon dioxide versus methane. , 2010, Chemical communications.

[122]  Marc Marshall,et al.  CO2 Adsorption-Based Separation by Metal Organic Framework (Cu-BTC) versus Zeolite (13X) , 2009 .

[123]  G. Seifert,et al.  H2 adsorption in metal-organic frameworks: dispersion or electrostatic interactions? , 2008, Chemistry.

[124]  A. Ghoufi,et al.  Transport diffusivity of CO2 in the highly flexible metal-organic framework MIL-53(Cr). , 2009, Angewandte Chemie.

[125]  Freek Kapteijn,et al.  An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. , 2009, Journal of the American Chemical Society.

[126]  Dianne E. Wiley,et al.  Economics of CO2 and Mixed Gas Geosequestration of Flue Gas Using Gas Separation Membranes , 2006 .

[127]  Chongli Zhong,et al.  Adsorption and separation of binary mixtures in a metal-organic framework Cu-BTC: A computational study , 2008 .

[128]  Eric J. Hurtado,et al.  Single and Multicomponent Sorption of CO2, CH4 and N2 in a Microporous Metal-Organic Framework , 2008 .

[129]  Michael O'Keeffe,et al.  Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. , 2010, Accounts of chemical research.

[130]  Gary T. Rochelle,et al.  Amine Scrubbing for CO2 Capture , 2009, Science.

[131]  Randall Q. Snurr,et al.  Enhanced CO2 Adsorption in Metal-Organic Frameworks via Occupation of Open-Metal Sites by Coordinated Water Molecules , 2009 .

[132]  A. Car,et al.  Hybrid membrane materials with different metal–organic frameworks (MOFs) for gas separation , 2006 .

[133]  Olav Bolland,et al.  Power generation with CO2 capture: Technology for CO2 purification , 2009 .

[134]  R. Ranjan,et al.  Microporous Metal Organic Framework Membrane on Porous Support Using the Seeded Growth Method , 2009 .

[135]  Geoff W. Stevens,et al.  CO2 capture from pre-combustion processes—Strategies for membrane gas separation , 2010 .

[136]  Bjørnar Arstad,et al.  Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide , 2008 .

[137]  Nilay Shah,et al.  An overview of CO2 capture technologies , 2010 .

[138]  A. Torrisi,et al.  Impact of ligands on CO(2) adsorption in metal-organic frameworks: First principles study of the interaction of CO(2) with functionalized benzenes. II. Effect of polar and acidic substituents. , 2010, The Journal of chemical physics.

[139]  F. Negri,et al.  Tuning the physisorption of molecular hydrogen: binding to aromatic, hetero-aromatic and metal-organic framework materials , 2007 .

[140]  C. Breneman,et al.  Determining atom‐centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis , 1990 .

[141]  Myunghyun Paik Suh,et al.  Highly selective CO(2) capture in flexible 3D coordination polymer networks. , 2009, Angewandte Chemie.

[142]  Hae‐Kwon Jeong,et al.  HKUST-1 membranes on porous supports using secondary growth , 2010 .

[143]  J. Caro,et al.  Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization. , 2010, Journal of the American Chemical Society.

[144]  S. Sakaki,et al.  Binding energy of transition-metal complexes with large pi-conjugate systems. Density functional theory vs post-Hartree-Fock methods. , 2007, The journal of physical chemistry. A.

[145]  D. Sholl,et al.  Self-diffusion and transport diffusion of light gases in metal-organic framework materials assessed using molecular dynamics simulations. , 2005, The journal of physical chemistry. B.

[146]  W. Koros,et al.  A General Strategy for Adhesion Enhancement in Polymeric Composites by Formation of Nanostructured Particle Surfaces , 2007 .

[147]  M. P. Suh,et al.  Stepwise and hysteretic sorption of N(2), O(2), CO(2), and H(2) gases in a porous metal-organic framework [Zn(2)(BPnDC)(2)(bpy)]. , 2010, Chemical communications.

[148]  R. Noble,et al.  Room-temperature ionic liquids and composite materials: platform technologies for CO(2) capture. , 2010, Accounts of chemical research.

[149]  D. Theodorou,et al.  Transport Diffusivity of N2 and CO2 in Silicalite: Coherent Quasielastic Neutron Scattering Measurements and Molecular Dynamics Simulations , 2004 .

[150]  A. Ghoufi,et al.  Molecular dynamics simulations of breathing MOFs: structural transformations of MIL-53(Cr) upon thermal activation and CO2 adsorption. , 2008, Angewandte Chemie.

[151]  Alexander M. Spokoyny,et al.  Carborane-based metal-organic frameworks as highly selective sorbents for CO(2) over methane. , 2008, Chemical communications.

[152]  Wei Mu,et al.  Computational study of the effect of organic linkers on natural gas upgrading in metal–organic frameworks , 2010 .

[153]  J. R. Benemann,et al.  Utilization of carbon dioxide from fossil fuel-burning power plants with biological systems , 1993 .

[154]  I. Karube,et al.  CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae , 1995 .

[155]  S. Kitagawa,et al.  Selective gas adsorption and unique structural topology of a highly stable guest-free zeolite-type MOF material with N-rich chiral open channels. , 2008, Chemistry.

[156]  H. Fjellvåg,et al.  Adsorption properties and structure of CO2 adsorbed on open coordination sites of metal-organic framework Ni2(dhtp) from gas adsorption, IR spectroscopy and X-ray diffraction. , 2008, Chemical communications.

[157]  H. R. Moon,et al.  Porous metal-organic framework with coordinatively unsaturated Mn(II) sites:sorption properties for various gases. , 2006, Inorganic chemistry.

[158]  Jason K. Ward,et al.  Metal organic framework mixed matrix membranes for gas separations , 2010 .

[159]  Ulrich Müller,et al.  Industrial applications of metal-organic frameworks. , 2009, Chemical Society reviews.

[160]  A. V. van Duin,et al.  Molecular dynamics simulations of stability of metal-organic frameworks against H2O using the ReaxFF reactive force field. , 2010, Chemical communications.

[161]  C. Serre,et al.  How hydration drastically improves adsorption selectivity for CO(2) over CH(4) in the flexible chromium terephthalate MIL-53. , 2006, Angewandte Chemie.

[162]  Timothy E. Fout,et al.  Advances in CO2 capture technology—The U.S. Department of Energy's Carbon Sequestration Program ☆ , 2008 .

[163]  M. Schröder Functional Metal-Organic Frameworks: Gas Storage, Separation and Catalysis , 2010 .

[164]  Jianguo Mi,et al.  Li-modified metal–organic frameworks for CO2/CH4 separation: a route to achieving high adsorption selectivity , 2010 .

[165]  C. Serre,et al.  Adsorption of CO2 in metal organic frameworks of different metal centres: Grand Canonical Monte Carlo simulations compared to experiments , 2007 .

[166]  P. Llewellyn,et al.  Adsorption mechanism of carbon dioxide in faujasites: grand canonical monte carlo simulations and microcalorimetry measurements. , 2005, The journal of physical chemistry. B.

[167]  Roland Kalb,et al.  Ionic liquids for post-combustion CO2 absorption , 2010 .

[168]  Jianguo Mi,et al.  Computational Study on the Influences of Framework Charges on CO2 Uptake in Metal−Organic Frameworks , 2009 .

[169]  K. Gubbins,et al.  Solvation pressures for simple fluids in micropores , 1993 .

[170]  D. Sholl,et al.  Assessment of a Metal−Organic Framework Membrane for Gas Separations Using Atomically Detailed Calculations: CO2, CH4, N2, H2 Mixtures in MOF-5 , 2009 .

[171]  Kimoon Kim,et al.  Microporous manganese formate: a simple metal-organic porous material with high framework stability and highly selective gas sorption properties. , 2004, Journal of the American Chemical Society.

[172]  M. Kurmoo Magnetic metal-organic frameworks. , 2009, Chemical Society reviews.

[173]  Z. Lai,et al.  Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth , 2009 .

[174]  Randall Q. Snurr,et al.  Enhancement of CO2/N2 selectivity in a metal-organic framework by cavity modification , 2009 .

[175]  Mira Park,et al.  Selective gas sorption property of an interdigitated 3-D metal-organic framework with 1-D channels. , 2007, Chemical communications.

[176]  Jianwen Jiang,et al.  Cation Characterization and CO2 Capture in Li+-Exchanged Metal−Organic Frameworks: From First-Principles Modeling to Molecular Simulation† , 2011 .

[177]  José A.C. Silva,et al.  A Microporous Metal−Organic Framework for Separation of CO2/N2 and CO2/CH4 by Fixed-Bed Adsorption , 2008 .

[178]  C. Malliakas,et al.  Unprecedented sulfone-functionalized metal-organic frameworks and gas-sorption properties. , 2009, Chemistry.

[179]  S. Kitagawa,et al.  A pillared-layer coordination polymer with a rotatable pillar acting as a molecular gate for guest molecules. , 2009, Journal of the American Chemical Society.

[180]  Hae‐Kwon Jeong,et al.  Synthesis of zeolitic imidazolate framework films and membranes with controlled microstructures. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[181]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[182]  C. Serre,et al.  On the breathing effect of a metal-organic framework upon CO(2) adsorption: Monte Carlo compared to microcalorimetry experiments. , 2007, Chemical communications.

[183]  S. Alavi,et al.  Grand-Canonical Monte Carlo and Molecular-Dynamics Simulations of Carbon-Dioxide and Carbon-Monoxide Adsorption in Zeolitic Imidazolate Framework Materials , 2010 .

[184]  Hong-Cai Zhou,et al.  Rationally designed micropores within a metal-organic framework for selective sorption of gas molecules. , 2007, Inorganic chemistry.

[185]  Craig M. Brown,et al.  Highly-selective and reversible O2 binding in Cr3(1,3,5-benzenetricarboxylate)2. , 2010, Journal of the American Chemical Society.

[186]  May-Britt Hägg,et al.  A feasibility study of CO2 capture from flue gas by a facilitated transport membrane , 2010 .

[187]  Jr. Franklin M. Orr,et al.  CO2 capture and storage: are we ready? , 2009 .

[188]  Gérard Férey,et al.  Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy , 2002 .

[189]  End Use,et al.  International energy annual , 1993 .

[190]  S. Takamizawa,et al.  Single-crystal membrane for anisotropic and efficient gas permeation. , 2010, Journal of the American Chemical Society.

[191]  C. Serre,et al.  Why hybrid porous solids capture greenhouse gases? , 2011, Chemical Society reviews.

[192]  Yves Schuurman,et al.  Heats of adsorption for seven gases in three metal-organic frameworks: systematic comparison of experiment and simulation. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[193]  O. Shekhah,et al.  Thin films of metal-organic frameworks. , 2009, Chemical Society reviews.

[194]  Berend Smit,et al.  Comparative molecular simulation study of CO2/N2 and CH4/N2 separation in zeolites and metal-organic frameworks. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[195]  Clair Gough State of the Art in Carbon Dioxide Capture and Storage in the UK: an experts' review , 2008 .

[196]  Hong-Cai Zhou,et al.  Gas storage in porous metal-organic frameworks for clean energy applications. , 2010, Chemical communications.

[197]  Dan Zhao,et al.  An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. , 2010, Angewandte Chemie.

[198]  T. Maji,et al.  Construction of a 2D Rectangular Grid and 3D Diamondoid Interpenetrated Frameworks and Their Functionalities by Changing the Second Spacers , 2010 .

[199]  Omar K. Yaghi,et al.  A combined experimental-computational investigation of carbon dioxide capture in a series of isoreticular zeolitic imidazolate frameworks. , 2010, Journal of the American Chemical Society.

[200]  U. Mueller,et al.  Topological Diversity, Adsorption and Fluorescence Properties of MOFs Based on a Tetracarboxylate Ligand , 2010 .

[201]  J. Caro,et al.  Controllable Synthesis of Metal–Organic Frameworks: From MOF Nanorods to Oriented MOF Membranes , 2010, Advanced materials.

[202]  Susumu Kitagawa,et al.  Porous coordination-polymer crystals with gated channels specific for supercritical gases. , 2003, Angewandte Chemie.

[203]  Kristie M. Adams,et al.  Porous lanthanide-organic frameworks: synthesis, characterization, and unprecedented gas adsorption properties. , 2003, Journal of the American Chemical Society.

[204]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[205]  Seth M. Cohen,et al.  Modulating metal-organic frameworks to breathe: a postsynthetic covalent modification approach. , 2009, Journal of the American Chemical Society.

[206]  Freek Kapteijn,et al.  Zeolite based films, membranes and membrane reactors: Progress and prospects , 2006 .

[207]  J. Caro,et al.  Molecular-sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-aminopropyltriethoxysilane as covalent linker. , 2010, Angewandte Chemie.

[208]  Paul Upham,et al.  The acceptability of CO2 capture and storage (CCS) in Europe: An assessment of the key determining factors. Part 2. The social acceptability of CCS and the wider impacts and repercussions of its implementation , 2009 .

[209]  Chongli Zhong,et al.  Molecular Simulation of CO2/H2 Mixture Separation in Metal-organic Frameworks: Effect of Catenation and Electrostatic Interactions , 2009 .

[210]  J. Botas,et al.  Cobalt doping of the MOF-5 framework and its effect on gas-adsorption properties. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[211]  Leonard R. MacGillivray,et al.  Metal-organic frameworks : design and application , 2010 .

[212]  A. J. Hunt,et al.  Generation, capture, and utilization of industrial carbon dioxide. , 2010, ChemSusChem.

[213]  H. Noguchi,et al.  Reversible structural change of Cu-MOF on exposure to water and its CO2 adsorptivity. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[214]  Chongli Zhong,et al.  Understanding the Adsorption and Diffusion of Carbon Dioxide in Zeolitic Imidazolate Frameworks: A Molecular Simulation Study , 2009 .

[215]  W. Jin,et al.  Metal-organic framework membranes fabricated via reactive seeding. , 2011, Chemical communications.

[216]  S. Qiu,et al.  Molecular engineering for synthesizing novel structures of metal–organic frameworks with multifunctional properties , 2009 .

[217]  Stefan Bachu,et al.  CO2 storage in geological media: Role, means, status and barriers to deployment , 2008 .

[218]  D. Sholl,et al.  Atomically detailed models of gas mixture diffusion through CuBTC membranes , 2009 .

[219]  M. Burghammer,et al.  Occurrence of Uncommon Infinite Chains Consisting of Edge-Sharing Octahedra in a Porous Metal Organic Framework-Type Aluminum Pyromellitate Al4(OH)8[C10O8H2] (MIL-120): Synthesis, Structure, and Gas Sorption Properties , 2009 .

[220]  Chongli Zhong,et al.  A General Approach for Estimating Framework Charges in Metal−Organic Frameworks , 2010 .

[221]  Rees B Rankin,et al.  Adsorption and Diffusion of Light Gases in ZIF-68 and ZIF-70: A Simulation Study , 2009 .

[222]  Qingyuan Yang,et al.  Computational Study of CO2 Storage in Metal-Organic Frameworks , 2008 .

[223]  Young Eun Cheon,et al.  Reversible transformation of ZnII coordination geometry in a single crystal of porous metal-organic framework [Zn3(ntb)2(EtOH)2].4 EtOH. , 2007, Chemistry.

[224]  Sankar Nair,et al.  Efficient calculation of diffusion limitations in metal organic framework materials: a tool for identifying materials for kinetic separations. , 2010, Journal of the American Chemical Society.

[225]  Wenchuan Wang,et al.  Multiscale simulation and modelling of adsorptive processes for energy gas storage and carbon dioxide capture in porous coordination frameworks , 2010 .

[226]  Chongli Zhong,et al.  Electrostatic-field-induced enhancement of gas mixture separation in metal-organic frameworks: a computational study. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[227]  F. Bonino,et al.  Structural Transformations and adsorption of fuel-related gases of a structurally responsive nickel phosphonate metal-organic framework, Ni-STA-12. , 2008, Journal of the American Chemical Society.

[228]  Chongli Zhong,et al.  Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal-organic frameworks. , 2006, The journal of physical chemistry. B.

[229]  Michael O'Keeffe,et al.  Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. , 2009, Journal of the American Chemical Society.

[230]  F. Larachi,et al.  Ionic liquids for CO2 capture—Development and progress , 2010 .

[231]  Evan J. Granite,et al.  Review of novel methods for carbon dioxide separation from flue and fuel gases , 2005 .

[232]  Stephen A. Roosa,et al.  Carbon Reduction: Policies, Strategies and Technologies , 2009 .

[233]  C. Serre,et al.  Probing the Adsorption Sites for CO2 in Metal Organic Frameworks Materials MIL-53 (Al, Cr) and MIL-47 (V) by Density Functional Theory , 2008 .

[234]  Wen-guan Lu,et al.  Three Coordination Polymers Based on 1H-Tetrazole (HTz) Generated via in Situ Decarboxylation: Synthesis, Structures, and Selective Gas Adsorption Properties , 2010 .

[235]  Jingui Duan,et al.  Enhanced CO2 binding affinity of a high-uptake rht-type metal-organic framework decorated with acylamide groups. , 2011, Journal of the American Chemical Society.

[236]  X. Bu,et al.  New three-dimensional porous metal organic framework with tetrazole functionalized aromatic carboxylic Acid: synthesis, structure, and gas adsorption properties. , 2010, Inorganic chemistry.

[237]  Tom K Woo,et al.  Electrostatic Potential Derived Atomic Charges for Periodic Systems Using a Modified Error Functional. , 2009, Journal of chemical theory and computation.

[238]  B. Crittenden,et al.  Adsorption Technology & Design , 1998 .

[239]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[240]  Shuguang Deng,et al.  Adsorption of CO(2), CH(4), N(2)O, and N(2) on MOF-5, MOF-177, and zeolite 5A. , 2010, Environmental science & technology.

[241]  J. Klinowski,et al.  Microwave-assisted synthesis of metal-organic frameworks. , 2011, Dalton transactions.

[242]  C. Janiak,et al.  MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs) , 2010 .

[243]  A. Laaksonen,et al.  Sorbents for CO(2) capture from flue gas--aspects from materials and theoretical chemistry. , 2010, Nanoscale.

[244]  J. Johnson,et al.  Microporous metal organic materials: promising candidates as sorbents for hydrogen storage. , 2004, Journal of the American Chemical Society.

[245]  Mircea Dincă,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[246]  Christopher W. Jones,et al.  Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. , 2009, ChemSusChem.

[247]  Young Eun Cheon,et al.  Multifunctional fourfold interpenetrating diamondoid network: gas separation and fabrication of palladium nanoparticles. , 2008, Chemistry.

[248]  Armin D. Ebner,et al.  State-of-the-art Adsorption and Membrane Separation Processes for Carbon Dioxide Production from Carbon Dioxide Emitting Industries , 2009 .

[249]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[250]  Pierce W.F. Riemer,et al.  Greenhouse gas mitigation technologies, an overview of the CO2 capture, storage and future activities of the IEA Greenhouse Gas R&D programme , 1996 .

[251]  Jörg Kärger,et al.  Diffusion in Zeolites and Other Microporous Solids , 1992 .

[252]  S. Bhatia,et al.  Ordered mesoporous silica (OMS) as an adsorbent and membrane for separation of carbon dioxide (CO2). , 2010, Advances in colloid and interface science.

[253]  J. Atwood,et al.  Flexible (breathing) interpenetrated metal-organic frameworks for CO2 separation applications. , 2008, Journal of the American Chemical Society.

[254]  Claude Mirodatos,et al.  Natural gas treating by selective adsorption: Material science and chemical engineering interplay , 2009 .

[255]  C. Arean,et al.  Computational and Experimental Studies on the Adsorption of CO, N2, and CO2 on Mg-MOF-74 , 2010 .

[256]  Hong‐Cai Zhou,et al.  Preparation and gas adsorption studies of three mesh-adjustable molecular sieves with a common structure. , 2009, Journal of the American Chemical Society.

[257]  Christian J. Doonan,et al.  Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks , 2010, Science.

[258]  D. Neumann,et al.  Reversible structural transition in MIL-53 with large temperature hysteresis. , 2008, Journal of the American Chemical Society.

[259]  Y. S. Lin,et al.  Adsorption and Diffusion of Carbon Dioxide on Metal−Organic Framework (MOF-5) , 2009 .

[260]  Michael O'Keeffe,et al.  High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture , 2008, Science.

[261]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[262]  S. Sandler,et al.  Metal-organic framework MIL-101 for adsorption and effect of terminal water molecules: from quantum mechanics to molecular simulation. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[263]  Chang-Min Kang,et al.  Optimization of culture conditions for CO2 fixation by a chemoautotrophic microorganism, strain YN-1 using factorial design , 2006 .

[264]  Jin-soo Seo,et al.  Discrimination of small gas molecules through adsorption: reverse selectivity for hydrogen in a flexible metal-organic framework. , 2009, Inorganic chemistry.

[265]  Jürgen Caro,et al.  Zeolite membranes – state of their development and perspective , 2000 .

[266]  O. Terasaki,et al.  Microstructural Optimization of a Zeolite Membrane for Organic Vapor Separation , 2003, Science.

[267]  Kimoon Kim,et al.  Temperature-triggered gate opening for gas adsorption in microporous manganese formate. , 2008, Chemical communications.

[268]  Satish K. Nune,et al.  Synthesis and properties of nano zeolitic imidazolate frameworks. , 2010, Chemical communications.

[269]  Yugen Zhang,et al.  Sustainable chemistry: imidazolium salts in biomass conversion and CO2 fixation , 2010 .

[270]  S. Huh,et al.  DABCO-functionalized metal-organic framework bearing a C2h-symmetric terphenyl dicarboxylate linker. , 2010, Dalton transactions.

[271]  R. Mahajan,et al.  Factors Controlling Successful Formation of Mixed-Matrix Gas Separation Materials , 2000 .

[272]  J. Hupp,et al.  Synthesis and gas sorption properties of a metal-azolium framework (MAF) material. , 2009, Inorganic chemistry.

[273]  A. J. Hernández-Maldonado,et al.  Cu2(pyrazine-2,3-dicarboxylate)2(4,4′-bipyridine) Porous Coordination Sorbents: Activation Temperature, Textural Properties, and CO2 Adsorption at Low Pressure Range , 2010 .

[274]  M. Allendorf,et al.  Luminescent metal-organic frameworks. , 2009, Chemical Society reviews.

[275]  Hong Zhao,et al.  In situ hydrothermal synthesis of tetrazole coordination polymers with interesting physical properties. , 2008, Chemical Society reviews.

[276]  Ronald E. Hester,et al.  Carbon capture : sequestration and storage , 2009 .

[277]  Enrico Drioli,et al.  Membrane technologies for CO2 separation , 2010 .

[278]  Yan Liu,et al.  Engineering Homochiral Metal‐Organic Frameworks for Heterogeneous Asymmetric Catalysis and Enantioselective Separation , 2010, Advanced materials.

[279]  S. Su,et al.  Post combustion CO2 capture by carbon fibre monolithic adsorbents , 2009 .

[280]  J. Ferraris,et al.  Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes , 2010 .

[281]  Krista S. Walton,et al.  A novel metal-organic coordination polymer for selective adsorption of CO2 over CH4. , 2009, Chemical communications.

[282]  A. Simon‐Masseron,et al.  Adsorption of CO(2), CH(4), and N(2) on zeolitic imidazolate frameworks: experiments and simulations. , 2010, Chemistry.

[283]  Dan Zhao,et al.  Stabilization of metal-organic frameworks with high surface areas by the incorporation of mesocavities with microwindows. , 2009, Journal of the American Chemical Society.

[284]  Randall Q Snurr,et al.  Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. , 2009, Journal of the American Chemical Society.

[285]  G. Férey,et al.  Charge distribution in metal organic framework materials: transferability to a preliminary molecular simulation study of the CO(2) adsorption in the MIL-53 (Al) system. , 2007, Physical chemistry chemical physics : PCCP.

[286]  S. Xiang,et al.  A new MOF-505 analog exhibiting high acetylene storage. , 2009, Chemical communications.

[287]  Chongli Zhong,et al.  Comparative Study of Separation Performance of COFs and MOFs for CH4/CO2/H2 Mixtures , 2010 .

[288]  Jin-soo Seo,et al.  Topologies of metal-organic frameworks based on pyrimidine-5-carboxylate and unexpected gas-sorption selectivity for CO(2). , 2010, Inorganic chemistry.

[289]  Yongwoon Lee,et al.  A robust highly interpenetrated metal-organic framework constructed from pentanuclear clusters for selective sorption of gas molecules. , 2010, Inorganic chemistry.

[290]  C. D. Collier,et al.  Metal-organic framework based on a trinickel secondary building unit exhibiting gas-sorption hysteresis. , 2007, Inorganic chemistry.

[291]  Xiao-Ming Chen,et al.  Supramolecular isomerism in coordination polymers. , 2009, Chemical Society reviews.

[292]  G. Shimizu,et al.  Phosphonate and sulfonate metal organic frameworks. , 2009, Chemical Society reviews.

[293]  Yan-juan Zhang,et al.  Interconversion between a nonporous nanocluster and a microporous coordination polymer showing selective gas adsorption. , 2010, Journal of the American Chemical Society.

[294]  P. Wheatley,et al.  Gas storage in nanoporous materials. , 2008, Angewandte Chemie.

[295]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[296]  Jianwen Jiang,et al.  A Highly Hydrophobic Metal−Organic Framework Zn(BDC)(TED)0.5 for Adsorption and Separation of CH3OH/H2O and CO2/CH4: An Integrated Experimental and Simulation Study , 2010 .

[297]  G. Qian,et al.  A rod packing microporous metal-organic framework with open metal sites for selective guest sorption and sensing of nitrobenzene. , 2010, Chemical communications.

[298]  T. Maji,et al.  Versatile functionalities in MOFs assembled from the same building units: interplay of structural flexibility, rigidity and regularity , 2010 .

[299]  A. Torrisi,et al.  Functionalized MOFs for Enhanced CO2 Capture , 2010 .

[300]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[301]  T. Nakagawa,et al.  Metal-ion-dependent gas sorptivity of elastic layer-structured MOFs. , 2009, Chemistry.

[302]  Young Eun Cheon,et al.  Syntheses and functions of porous metallosupramolecular networks , 2008 .

[303]  David Dubbeldam,et al.  Understanding inflections and steps in carbon dioxide adsorption isotherms in metal-organic frameworks. , 2008, Journal of the American Chemical Society.

[304]  Stephen A. Rackley,et al.  Carbon Capture and Storage , 2009 .

[305]  Bo Wang,et al.  Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites , 2009, Proceedings of the National Academy of Sciences.

[306]  D. Sholl,et al.  Computational identification of a metal organic framework for high selectivity membrane-based CO2/CH4 separations: Cu(hfipbb)(H2hfipbb)0.5. , 2009, Physical chemistry chemical physics : PCCP.

[307]  Armin Feldhoff,et al.  Molecular sieve membrane: supported metal-organic framework with high hydrogen selectivity. , 2010, Angewandte Chemie.

[308]  K. Sirkar,et al.  Dendrimer Membranes: A CO 2 -Selective Molecular Gate , 2000 .

[309]  Chun Xiang Lin,et al.  Ceramic membranes for gas processing in coal gasification , 2010 .

[310]  Rajamani Krishna,et al.  In silico screening of zeolite membranes for CO2 capture , 2010 .

[311]  Jihyun An,et al.  High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine- and amino-decorated pores. , 2010, Journal of the American Chemical Society.

[312]  William J. Koros,et al.  Tailoring mixed matrix composite membranes for gas separations , 1997 .

[313]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[314]  Michael J Zaworotko,et al.  Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks. , 2009, Chemical Society reviews.

[315]  A. Matzger,et al.  Liquid phase separations by crystalline microporous coordination polymers , 2010 .

[316]  Rajamani Krishna,et al.  Investigating cluster formation in adsorption of CO2, CH4, and Ar in zeolites and metal organic frameworks at subcritical temperatures. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[317]  Kamalesh K. Sirkar,et al.  Selective CO2 Separation from CO2−N2 Mixtures by Immobilized Carbonate−Glycerol Membranes , 1999 .

[318]  R. Banerjee,et al.  Selective CO2 and H2 adsorption in a chiral magnesium-based metal organic framework (Mg-MOF) with open metal sites , 2010 .

[319]  Randall Q Snurr,et al.  Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks. , 2006, The journal of physical chemistry. B.

[320]  Jianwen Jiang,et al.  Molecular screening of metal-organic frameworks for CO2 storage. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[321]  Kwong H. Yung,et al.  Carbon Dioxide's Liquid-Vapor Coexistence Curve And Critical Properties as Predicted by a Simple Molecular Model , 1995 .

[322]  W. Wernsdorfer,et al.  DFT computational rationalization of an unusual spin ground state in an Mn12 single-molecule magnet with a low-symmetry loop structure. , 2005, Angewandte Chemie.

[323]  Alan L. Myers,et al.  Thermodynamics of mixed‐gas adsorption , 1965 .

[324]  Lang Liu,et al.  Dynamic interplay between spin-crossover and host-guest function in a nanoporous metal-organic framework material. , 2009, Journal of the American Chemical Society.

[325]  Kamalesh K. Sirkar,et al.  Immobilized glycerol-based liquid membranes in hollow fibers for selective CO2 separation from CO2–N2 mixtures , 2001 .

[326]  J. Ferraris,et al.  Gas permeability properties of Matrimid® membranes containing the metal-organic framework Cu–BPY–HFS , 2008 .

[327]  J. Navarro,et al.  Polymorphic coordination networks responsive to CO2, moisture, and thermal stimuli: porous cobalt(II) and zinc(II) fluoropyrimidinolates. , 2008, Chemistry.

[328]  David Gerard,et al.  Carbon capture and sequestration: integrating technology, monitoring, regulation , 2007 .

[329]  Young Eun Cheon,et al.  Selective gas adsorption in a magnesium-based metal-organic framework. , 2009, Chemical communications.

[330]  R. Krishna,et al.  Highlighting a variety of unusual characteristics of adsorption and diffusion in microporous materials induced by clustering of guest molecules. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[331]  C. Mirkin,et al.  Infinite coordination polymer nano- and microparticle structures. , 2009, Chemical Society reviews.

[332]  Yue‐Biao Zhang,et al.  A highly connected porous coordination polymer with unusual channel structure and sorption properties. , 2009, Angewandte Chemie.

[333]  Stuart R. Batten,et al.  Coordination Polymers: Design, Analysis and Application , 2009 .

[334]  Jürgen Caro,et al.  Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. , 2009, Journal of the American Chemical Society.

[335]  Rajamani Krishna,et al.  Method for Analyzing Structural Changes of Flexible Metal-Organic Frameworks Induced by Adsorbates , 2009 .

[336]  C. Serre,et al.  Single crystal X-ray diffraction studies of carbon dioxide and fuel-related gases adsorbed on the small pore scandium terephthalate metal organic framework, Sc2(O2CC6H4CO2)3. , 2009, Langmuir : the ACS journal of surfaces and colloids.