Finite element approximation of fractional order elliptic boundary value problems
暂无分享,去创建一个
[1] Ricardo H. Nochetto,et al. A PDE Approach to Fractional Diffusion in General Domains: A Priori Error Analysis , 2013, Found. Comput. Math..
[2] Larry L. Schumaker,et al. Finite Elements: Theory, Fast Solvers, and Applications in Elasticity Theory , 2007 .
[3] J. Hesthaven,et al. Local discontinuous Galerkin methods for fractional diffusion equations , 2013 .
[4] V. Ervin,et al. Variational formulation for the stationary fractional advection dispersion equation , 2006 .
[5] J. Klafter,et al. The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .
[6] S. Levy,et al. Elements of functional analysis , 1970 .
[7] T. Andô,et al. Comparison of norms |||f (A)−f (B)||| and |||f (|A−B|)||| , 1988 .
[8] Mark M. Meerschaert,et al. A second-order accurate numerical approximation for the fractional diffusion equation , 2006, J. Comput. Phys..
[9] H. Kober. ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .
[10] Abdon Atangana,et al. On the stability and convergence of the time-fractional variable order telegraph equation , 2015, J. Comput. Phys..
[11] B. Henry,et al. An Introduction to Fractional Diffusion , 2010 .
[12] Eric R. Weeks,et al. Observation of anomalous diffusion and Lévy flights , 1995 .
[13] L. A. Li︠u︡sternik,et al. Elements of Functional Analysis , 1962 .
[14] Fawang Liu,et al. Finite volume and finite element methods for solving a one-dimensional space-fractional Boussinesq equation , 2014 .
[15] Nicholas J. Higham,et al. A Schur-Padé Algorithm for Fractional Powers of a Matrix , 2011, SIAM J. Matrix Anal. Appl..
[16] Fawang Liu,et al. Stability and convergence of a new finite volume method for a two-sided space-fractional diffusion equation , 2015, Appl. Math. Comput..
[17] Fawang Liu,et al. Stability and convergence of an implicit numerical method for the space and time fractional Bloch–Torrey equation , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[18] D. Benson,et al. Application of a fractional advection‐dispersion equation , 2000 .
[19] Wei Yang,et al. Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative , 2013, J. Comput. Phys..
[20] Fawang Liu,et al. Numerical investigation of three types of space and time fractional Bloch-Torrey equations in 2D , 2013 .
[21] G. Fernández-García,et al. Superdiffusive wave front propagation in a chemical active flow , 2008 .
[22] I. Turner,et al. Numerical Approximation of a Fractional-In-Space Diffusion Equation, I , 2005 .
[23] Nicholas Hale,et al. An Efficient Implicit FEM Scheme for Fractional-in-Space Reaction-Diffusion Equations , 2012, SIAM J. Sci. Comput..
[24] A. M. Edwards,et al. Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer , 2007, Nature.
[25] Han Zhou,et al. Quasi-Compact Finite Difference Schemes for Space Fractional Diffusion Equations , 2012, J. Sci. Comput..
[26] Zhiqiang Zhou,et al. Convergence analysis of moving finite element methods for space fractional differential equations , 2014, J. Comput. Appl. Math..
[27] Fawang Liu,et al. A finite volume scheme with preconditioned Lanczos method for two-dimensional space-fractional reaction–diffusion equations , 2014 .
[28] R. Treumann. Theory of super‐diffusion for the magnetopause , 1997 .
[29] L. Caffarelli,et al. An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.
[30] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[31] F. Izsák,et al. A finite difference method for fractional diffusion equations with Neumann boundary conditions , 2015 .
[32] Fawang Liu,et al. Novel Numerical Methods for Solving the Time-Space Fractional Diffusion Equation in Two Dimensions , 2011, SIAM J. Sci. Comput..
[33] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[34] Mingrong Cui,et al. Compact alternating direction implicit method for two-dimensional time fractional diffusion equation , 2012, J. Comput. Phys..
[35] J. Viecelli. On the Possibility of Singular Low-Frequency Spectra and Lévy Law Persistence Statistics in the Planetary-Scale Turbulent Circulation , 1998 .
[36] Kun Zhou,et al. Analysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints , 2012, SIAM Rev..
[37] M. Meerschaert,et al. Finite difference approximations for fractional advection-dispersion flow equations , 2004 .
[38] D. Braess. Finite Elements: Finite Elements , 2007 .
[39] Teruo Ushijima,et al. A Note on the Fractional Powers of Operators Approximating a Positive Definite Selfadjoint Operator , 1993 .
[40] Marta D'Elia,et al. The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator , 2013, Comput. Math. Appl..