Finite element approximation of fractional order elliptic boundary value problems

A finite element numerical method is investigated for fractional order elliptic boundary value problems with homogeneous Dirichlet type boundary conditions. It is pointed out that an appropriate stiffness matrix can be obtained by taking the prescribed fractional power of the stiffness matrix corresponding to the non-fractional elliptic operators. It is proved that this approach, which is also called the matrix transformation or matrix transfer method, delivers optimal rate of convergence in the L 2 -norm.

[1]  Ricardo H. Nochetto,et al.  A PDE Approach to Fractional Diffusion in General Domains: A Priori Error Analysis , 2013, Found. Comput. Math..

[2]  Larry L. Schumaker,et al.  Finite Elements: Theory, Fast Solvers, and Applications in Elasticity Theory , 2007 .

[3]  J. Hesthaven,et al.  Local discontinuous Galerkin methods for fractional diffusion equations , 2013 .

[4]  V. Ervin,et al.  Variational formulation for the stationary fractional advection dispersion equation , 2006 .

[5]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[6]  S. Levy,et al.  Elements of functional analysis , 1970 .

[7]  T. Andô,et al.  Comparison of norms |||f (A)−f (B)||| and |||f (|A−B|)||| , 1988 .

[8]  Mark M. Meerschaert,et al.  A second-order accurate numerical approximation for the fractional diffusion equation , 2006, J. Comput. Phys..

[9]  H. Kober ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .

[10]  Abdon Atangana,et al.  On the stability and convergence of the time-fractional variable order telegraph equation , 2015, J. Comput. Phys..

[11]  B. Henry,et al.  An Introduction to Fractional Diffusion , 2010 .

[12]  Eric R. Weeks,et al.  Observation of anomalous diffusion and Lévy flights , 1995 .

[13]  L. A. Li︠u︡sternik,et al.  Elements of Functional Analysis , 1962 .

[14]  Fawang Liu,et al.  Finite volume and finite element methods for solving a one-dimensional space-fractional Boussinesq equation , 2014 .

[15]  Nicholas J. Higham,et al.  A Schur-Padé Algorithm for Fractional Powers of a Matrix , 2011, SIAM J. Matrix Anal. Appl..

[16]  Fawang Liu,et al.  Stability and convergence of a new finite volume method for a two-sided space-fractional diffusion equation , 2015, Appl. Math. Comput..

[17]  Fawang Liu,et al.  Stability and convergence of an implicit numerical method for the space and time fractional Bloch–Torrey equation , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  D. Benson,et al.  Application of a fractional advection‐dispersion equation , 2000 .

[19]  Wei Yang,et al.  Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative , 2013, J. Comput. Phys..

[20]  Fawang Liu,et al.  Numerical investigation of three types of space and time fractional Bloch-Torrey equations in 2D , 2013 .

[21]  G. Fernández-García,et al.  Superdiffusive wave front propagation in a chemical active flow , 2008 .

[22]  I. Turner,et al.  Numerical Approximation of a Fractional-In-Space Diffusion Equation, I , 2005 .

[23]  Nicholas Hale,et al.  An Efficient Implicit FEM Scheme for Fractional-in-Space Reaction-Diffusion Equations , 2012, SIAM J. Sci. Comput..

[24]  A. M. Edwards,et al.  Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer , 2007, Nature.

[25]  Han Zhou,et al.  Quasi-Compact Finite Difference Schemes for Space Fractional Diffusion Equations , 2012, J. Sci. Comput..

[26]  Zhiqiang Zhou,et al.  Convergence analysis of moving finite element methods for space fractional differential equations , 2014, J. Comput. Appl. Math..

[27]  Fawang Liu,et al.  A finite volume scheme with preconditioned Lanczos method for two-dimensional space-fractional reaction–diffusion equations , 2014 .

[28]  R. Treumann Theory of super‐diffusion for the magnetopause , 1997 .

[29]  L. Caffarelli,et al.  An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.

[30]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[31]  F. Izsák,et al.  A finite difference method for fractional diffusion equations with Neumann boundary conditions , 2015 .

[32]  Fawang Liu,et al.  Novel Numerical Methods for Solving the Time-Space Fractional Diffusion Equation in Two Dimensions , 2011, SIAM J. Sci. Comput..

[33]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[34]  Mingrong Cui,et al.  Compact alternating direction implicit method for two-dimensional time fractional diffusion equation , 2012, J. Comput. Phys..

[35]  J. Viecelli On the Possibility of Singular Low-Frequency Spectra and Lévy Law Persistence Statistics in the Planetary-Scale Turbulent Circulation , 1998 .

[36]  Kun Zhou,et al.  Analysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints , 2012, SIAM Rev..

[37]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[38]  D. Braess Finite Elements: Finite Elements , 2007 .

[39]  Teruo Ushijima,et al.  A Note on the Fractional Powers of Operators Approximating a Positive Definite Selfadjoint Operator , 1993 .

[40]  Marta D'Elia,et al.  The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator , 2013, Comput. Math. Appl..