Navigation in femoral-shaft fractures--from lab tests to clinical routine.

INTRODUCTION This study evaluates the use of a navigation system (BrainLAB, Feldkirchen, Germany) to intra-operatively check for correct length, axis and rotation in intramedullary nailing of femoral-shaft fractures in an experimental setting and in clinical routine. MATERIALS AND METHODS We tested the navigation system in two experimental settings before introducing it into clinical routine. In the first experiment, 10 osteotomised model femora were fixed with intramedullary nails by using a navigation system. The goal was a locking fixation in predefined values for length and rotation. In the second experiment, eight examiners assessed values for rotation and length of one femur 10 times to examine the accuracy and reproducibility of that determination. Following this, we navigated 40 femoral nailing procedures in our department. Preoperatively, we assessed values of femur geometry on the contralateral side in a computed tomography (CT) scan and reproduced these values intra-operatively on the fractured side, guided by the navigation system. During the intervention, we recorded the length of the procedure steps and the fluoroscopy time. We verified the intra-operative values achieved with the navigation system in a postoperative CT scan and documented differences in rotation and length. After the assessment, we analysed the data for different findings on femur geometry, fluoroscopy time and procedure duration. RESULTS The experimental evaluation showed a range of ±5° for anteversion differences and ±2.3 mm for length differences. We estimated this accuracy as sufficient to use the system in clinical routine. The navigation system was used for 40 fracture fixations. All our criteria for restoring femoral geometry could be achieved by navigation guidance in these procedures. Setting up the system took on average 33±11.5 min. An additional fluoroscopy time of 36±22 s was needed to acquire the reference X-rays and to verify pin placement. The differences between anteversion values assessed in intra-operative planning steps on the navigation system and values assessed with a postoperative CT were on average 5.4±3.5°, whilst femur length differed on average by 4±4 mm. DISCUSSION Many authors judge intra-operative control of anteversion in femoral-shaft fracture fixation as problematic. Neither our experimental navigation assessment nor our clinical navigated evaluation showed relevant anteversion differences to a postoperative CT assessment of femur geometry. After initial training, guidance by a navigation system achieves consistent results in a clinical situation. CONCLUSIONS The use of a navigation system to align axis, length and rotation led to a secure way of avoiding any relevant malalignment in complex femur-shaft fractures whilst exposing patients to an acceptable amount of additional procedure sequences. Malalignment can be avoided by using a navigation system in the operative treatment of femoral-shaft fractures and may be integrated into clinical routine in specialised centres.

[1]  Eran Peleg,et al.  Computerised navigation for closed reduction during femoral intramedullary nailing. , 2005, Injury.

[2]  W. Puhl,et al.  Femorale antetorsion : Stellenwert klinischer und bildgebender Untersuchungsverfahren bei Kindern und Jugendlichen , 2008 .

[3]  C Krettek,et al.  Computer-assisted fluoroscopy-based reduction of femoral fractures and antetorsion correction. , 2000, Computer aided surgery : official journal of the International Society for Computer Aided Surgery.

[4]  L. Kinzl,et al.  Limb malalignment and functional outcome after antegrade versus retrograde intramedullary nailing in distal femoral fractures. , 2006, The Journal of trauma.

[5]  K. Klemm,et al.  [Dynamic and static locking of the intramedullary nail]. , 1972, Monatsschrift fur Unfallheilkunde, Versicherungs-, Versorgungs- und Verkehrsmedizin.

[6]  D. Clawson,et al.  Closed intramedullary nailing of femoral fractures. A report of five hundred and twenty cases. , 2005, The Journal of bone and joint surgery. American volume.

[7]  C. Krettek,et al.  Prinzipien der intramedullären Knochenbruchstabilisierung Teil 1 , 2001, Der Unfallchirurg.

[8]  H. Jend [Computed tomographic determination of the anteversion angle. Premises and possibilities]. , 1986, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[9]  G. Taglang,et al.  Techniques chirurgicales de l'enclouage centromédullaire des os longs , 2012 .

[10]  Bildwandlergestützte Vermeidung einer Torsionsabweichung zur Gegenseite bei der Oberschenkelmarknagelung , 2006, Der Unfallchirurg.

[11]  L. Sharma,et al.  The role of knee alignment in disease progression and functional decline in knee osteoarthritis. , 2001, JAMA.

[12]  L Kinzl,et al.  [Computerized tomography measurement of torsion angle of the lower extremities]. , 1994, Der Unfallchirurg.

[13]  Daniel Kendoff,et al.  Navigated intraoperative analysis of lower limb alignment , 2005, Archives of Orthopaedic and Trauma Surgery.

[14]  R. Hilgert,et al.  [Preventing malrotation during intramedullary nailing of femoral fractures]. , 2006, Der Unfallchirurg.

[15]  H. Wissing,et al.  [Radiological determination of femoral rotation deformity--computerized tomography, optimized measurement accuracy and exposure dosage]. , 1997, Zeitschrift fur Orthopadie und ihre Grenzgebiete.

[16]  L. Kinzl,et al.  Torsionskorrekturen nach Marknagelosteosynthesen der unteren Extremität , 1997, Der Unfallchirurg.

[17]  N. Verdonschot,et al.  Avoiding rotational malalignment after fractures of the femur by using the profile of the lesser trochanter: an in vitro study , 2005, Archives of Orthopaedic and Trauma Surgery.

[18]  T. Terjesen,et al.  Torsional deformity after intramedullary nailing of femoral shaft fractures. Measurement of anteversion angles in 110 patients. , 1993, The Journal of bone and joint surgery. British volume.

[19]  W. Puhl,et al.  [Femoral anteversion: significance of clinical methods and imaging techniques in the diagnosis in children and adolescents]. , 1996, Zeitschrift fur Orthopadie und ihre Grenzgebiete.

[20]  L. Joskowicz,et al.  FRACAS: a system for computer-aided image-guided long bone fracture surgery. , 1998, Computer aided surgery : official journal of the International Society for Computer Aided Surgery.

[21]  G. Muhr,et al.  Ante- und retrograde Marknagelung bei Femurschaftfrakturen , 2005, Trauma und Berufskrankheit.

[22]  H. Wissing,et al.  Radiologische Rotationsfehlerbestimmung am Femur - Computertomographie, optimierte Meßgenauigkeit und Expositionsdosis , 2008 .

[23]  W. Strecker,et al.  Analyse der Beingeometrie – Standardtechniken und Normwerte , 1998, Der Chirurg.

[24]  L Kinzl,et al.  [Local complications of intramedullary nailing]. , 1996, Der Orthopade.

[25]  P Keppler,et al.  [Correcting torsion after intramedullary nailing osteosynthesis of the lower extremity]. , 1997, Der Unfallchirurg.

[26]  Leo Joskowicz,et al.  Computer-based periaxial rotation measurement for aligning fractured femur fragments from CT: a feasibility study. , 2002 .

[27]  N. Verdonschot,et al.  Rotational Malalignment After Intramedullary Nailing of Femoral Fractures , 2004, Journal of orthopaedic trauma.

[28]  Michael J Gardner,et al.  Computer Navigation Allows for Accurate Reduction of Femoral Fractures , 2007, Clinical orthopaedics and related research.

[29]  P. Tornetta,et al.  Femoral torsion after interlocked nailing of unstable femoral fractures. , 1995, The Journal of trauma.

[30]  J. Jahng,et al.  Prevention of malrotation deformity in femoral shaft fracture. , 1998, Journal of orthopaedic trauma.

[31]  M. Gardner,et al.  Femoral fracture malrotation caused by freehand versus navigated distal interlocking. , 2008, Injury.

[32]  Sigvard T. Hansen,et al.  Closed Intramedullary Nailing of Femoral Fractures , 2001 .

[33]  R. Probe,et al.  The Effects of Femoral Shaft Malrotation on Lower Extremity Anatomy , 2004, Journal of orthopaedic trauma.

[34]  H. Resch,et al.  [Rotational deformities following pediatric femoral shaft fracture]. , 1989, Aktuelle Traumatologie.

[35]  G. Ritter,et al.  [Computerized tomography follow-up of the ante-torsion angle after femoral shaft fractures in the adult]. , 1992, Der Unfallchirurg.

[36]  Guoyan Zheng,et al.  Computer-assisted LISS plate osteosynthesis of proximal tibia fractures: Feasibility study and first clinical results , 2005, Computer aided surgery : official journal of the International Society for Computer Aided Surgery.

[37]  E. McCarty,et al.  Reamed intramedullary nailing of the femur: 551 cases. , 1999, The Journal of trauma.

[38]  F. Gebhard,et al.  Längen und Torsionen der unteren Extremitäten , 1997 .

[39]  W R Obermann,et al.  Degenerative changes at the knee and ankle related to malunion of tibial fractures. 15-year follow-up of 88 patients. , 1996, The Journal of bone and joint surgery. British volume.