The Brezis-Nirenberg problem in 4D

The problem \begin{equation} \label{bn} -\Delta u=|u|^{4\over n-2}u+\lambda V u\ \hbox{in}\ \Omega,\ u=0\ \hbox{on}\ \partial\Omega \end{equation} where $\Omega$ is a bounded regular domain in $\mathbb R^n$, $\lambda\in \mathbb R$ and $V\in C^0(\overline \Omega),$ that was introduced by Brezis and Nirenberg in their famous paper, where they address the existence of positive solutions in the autonomous case, i.e. the potential $V$ is constant. Since then, a huge amount of work has been done. In the following we will make a brief history highlighting the results which are much closer to the problem we wish to study in the present paper.

[1]  Tobias König,et al.  Fine multibubble analysis in the higher-dimensional Brezis-Nirenberg problem , 2022, 2211.00595.

[2]  Tobias König,et al.  Multibubble blow-up analysis for the Brezis-Nirenberg problem in three dimensions , 2022, 2208.12337.

[3]  Bruno Premoselli Towers of Bubbles for Yamabe-Type Equations and for the Brézis–Nirenberg Problem in Dimensions n≥7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargi , 2022, The Journal of Geometric Analysis.

[4]  A. L. Amadori,et al.  A complete scenario on nodal radial solutions to the Brezis Nirenberg problem in low dimensions , 2020, 2010.12311.

[5]  N. Ghoussoub,et al.  Sign-changing solutions for critical equations with Hardy potential , 2017, 1709.04888.

[6]  M. Musso,et al.  Multispike solutions for the Brezis–Nirenberg problem in dimension three , 2017, Journal of Differential Equations.

[7]  A. Pistoia,et al.  Towering Phenomena for the Yamabe Equation on Symmetric Manifolds , 2016, 1603.01538.

[8]  A. Pistoia,et al.  Clustering Phenomena for Linear Perturbation of the Yamabe Equation , 2015, Partial Differential Equations Arising from Physics and Geometry.

[9]  J. Dolbeault,et al.  THE BREZIS-NIRENBERG PROBLEM NEAR CRITICALITY IN DIMENSION 3 ? , 2004 .

[10]  A. Pistoia,et al.  On the effect of the domain geometry on the existence of sign changing solutions to elliptic problems with critical and supercritical growth , 2004 .

[11]  A. Pistoia,et al.  Concentration phenomena in elliptic problems with critical and supercritical growth , 2003, Advances in Differential Equations.

[12]  G. Bianchi,et al.  A note on the Sobolev inequality , 1991 .

[13]  Zheng-chao Han Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent , 1991 .

[14]  O. Rey The role of the green's function in a non-linear elliptic equation involving the critical Sobolev exponent , 1990 .

[15]  Haim Brezis,et al.  Positive Solutions of Nonlinear Elliptic Equations Involving Critical Sobolev Exponents Haim Brezis , 2022 .

[16]  G. Talenti,et al.  Best constant in Sobolev inequality , 1976 .

[17]  Olivier Druet,et al.  Elliptic equations with critical Sobolev exponents in dimension 3 , 2002 .

[18]  L. Peletier,et al.  Asymptotics for Elliptic Equations Involving Critical Growth , 1989 .

[19]  T. Aubin,et al.  Problèmes isopérimétriques et espaces de Sobolev , 1976 .