Aberrant Regulation and Function of MicroRNAs in Cancer

[1]  Vikram Agarwal,et al.  Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. , 2014, Molecular cell.

[2]  Hao Zhu,et al.  Lin28 sustains early renal progenitors and induces Wilms tumor , 2014, Genes & development.

[3]  P. Pandolfi,et al.  The multilayered complexity of ceRNA crosstalk and competition , 2014, Nature.

[4]  Julian Downward,et al.  Hmga2 functions as a competing endogenous RNA to promote lung cancer progression , 2013, Nature.

[5]  G. Daley,et al.  Lin28 Enhances Tissue Repair by Reprogramming Cellular Metabolism , 2013, Cell.

[6]  A. Bosserhoff,et al.  Strong reduction of AGO2 expression in melanoma and cellular consequences , 2013, British Journal of Cancer.

[7]  Jianbiao Zhou,et al.  LIN28/LIN28B: an emerging oncogenic driver in cancer stem cells. , 2013, The international journal of biochemistry & cell biology.

[8]  Yan Wang,et al.  EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2 , 2013, Nature.

[9]  D. Tollervey,et al.  Mapping the Human miRNA Interactome by CLASH Reveals Frequent Noncanonical Binding , 2013, Cell.

[10]  Caroline G. L. Lee,et al.  Single Nucleotide Polymorphisms Associated with MicroRNA Regulation , 2013, Biomolecules.

[11]  D. Hoyert,et al.  Annual Summary of Vital Statistics: 2010–2011 , 2013, Pediatrics.

[12]  Jianping Zhang,et al.  Feedback Regulations of miR-21 and MAPKs via Pdcd4 and Spry1 Are Involved in Arsenite-Induced Cell Malignant Transformation , 2013, PloS one.

[13]  A. D’Ambrogio,et al.  Translational control of cell growth and malignancy by the CPEBs , 2013, Nature Reviews Cancer.

[14]  P. Fortina,et al.  Regulation of miR106b cluster through the RB pathway , 2013, Cell cycle.

[15]  S. Ciafrè,et al.  A complex network of interactions and reciprocal regulations in cancer , 2013 .

[16]  C. Mello,et al.  Specific miRNA stabilization by Gld2-catalyzed monoadenylation. , 2012, Cell reports.

[17]  Hiromu Suzuki,et al.  DNA methylation and microRNA dysregulation in cancer , 2012, Molecular oncology.

[18]  Dennis Shasha,et al.  miR-EdiTar: a database of predicted A-to-I edited miRNA target sites , 2012, Bioinform..

[19]  Edwin Sandanaraj,et al.  Attenuated adenosine-to-inosine editing of microRNA-376a* promotes invasiveness of glioblastoma cells. , 2012, The Journal of clinical investigation.

[20]  S. Srikantan,et al.  RNA-binding protein AUF1 represses Dicer expression , 2012, Nucleic acids research.

[21]  R. Gregory,et al.  Lin28-mediated control of let-7 microRNA expression by alternative TUTases Zcchc11 (TUT4) and Zcchc6 (TUT7). , 2012, RNA.

[22]  Yingqun Huang,et al.  Does Lin28 Antagonize miRNA-Mediated Repression by Displacing miRISC from Target mRNAs? , 2012, Front. Gene..

[23]  Annick Harel-Bellan,et al.  Argonaute proteins couple chromatin silencing to alternative splicing , 2012, Nature Structural &Molecular Biology.

[24]  Subbaya Subramanian,et al.  Competing endogenous RNA database , 2012, Bioinformation.

[25]  Isaac Crespo,et al.  A Novel Network Integrating a miRNA-203/SNAI1 Feedback Loop which Regulates Epithelial to Mesenchymal Transition , 2012, PloS one.

[26]  Jun-Yuan Ji,et al.  Pumilio facilitates miRNA regulation of the E2F3 oncogene. , 2012, Genes & development.

[27]  Xuedan Chen,et al.  Transcriptional activation of microRNA-34a by NF-kappa B in human esophageal cancer cells , 2012, BMC Molecular Biology.

[28]  Eugene Berezikov,et al.  Evolution of microRNA diversity and regulation in animals , 2011, Nature Reviews Genetics.

[29]  F. Slack,et al.  MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy , 2011, Nature Reviews Cancer.

[30]  F. Yu,et al.  MicroRNA 34c Gene Down-regulation via DNA Methylation Promotes Self-renewal and Epithelial-Mesenchymal Transition in Breast Tumor-initiating Cells* , 2011, The Journal of Biological Chemistry.

[31]  D. Dixon,et al.  The mRNA Stability Factor HuR Inhibits MicroRNA-16 Targeting of COX-2 , 2011, Molecular Cancer Research.

[32]  G. Favre,et al.  HuR-dependent loading of miRNA RISC to the mRNA encoding the Ras-related small GTPase RhoB controls its translation during UV-induced apoptosis , 2011, Cell Death and Differentiation.

[33]  J. Ule,et al.  Selective inhibition of microRNA accessibility by RBM38 is required for p53 activity , 2011, Nature communications.

[34]  P. Pandolfi,et al.  In Vivo Identification of Tumor- Suppressive PTEN ceRNAs in an Oncogenic BRAF-Induced Mouse Model of Melanoma , 2011, Cell.

[35]  Ferdinando Di Cunto,et al.  Coding-Independent Regulation of the Tumor Suppressor PTEN by Competing Endogenous mRNAs , 2011, Cell.

[36]  A. Barker,et al.  The RNA-binding Protein HuR Opposes the Repression of ERBB-2 Gene Expression by MicroRNA miR-331-3p in Prostate Cancer Cells* , 2011, The Journal of Biological Chemistry.

[37]  P. Pandolfi,et al.  A ceRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language? , 2011, Cell.

[38]  G. M. Wilson,et al.  Modulation of neoplastic gene regulatory pathways by the RNA-binding factor AUF1. , 2011, Frontiers in bioscience.

[39]  Zhaoli Chen,et al.  DNA hypermethylation of microRNA-34b/c has prognostic value for stage Ⅰ non-small cell lung cancer , 2011, Cancer biology & therapy.

[40]  S. Ariyan,et al.  A Variant in a MicroRNA Complementary Site in the 3′UTR of the KIT Oncogene Increases Risk of Acral Melanoma , 2010, Oncogene.

[41]  D. Patel,et al.  Phosphorylation of human Argonaute proteins affects small RNA binding , 2010, Nucleic acids research.

[42]  S. Bohlander,et al.  C/EBPα regulated microRNA-34a targets E2F3 during granulopoiesis and is down-regulated in AML with CEBPA mutations. , 2010, Blood.

[43]  H. Nakagama,et al.  MicroRNA, SND1, and alterations in translational regulation in colon carcinogenesis. , 2010, Mutation research.

[44]  B. Davis-Dusenbery,et al.  MicroRNA in Cancer: The Involvement of Aberrant MicroRNA Biogenesis Regulatory Pathways. , 2010, Genes & cancer.

[45]  Leigh-Ann MacFarlane,et al.  MicroRNA: Biogenesis, Function and Role in Cancer , 2010, Current genomics.

[46]  I. Wistuba,et al.  TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs , 2010, Nature.

[47]  R. Elkon,et al.  A Pumilio-induced RNA structure switch in p27-3′ UTR controls miR-221 and miR-222 accessibility , 2010, Nature Cell Biology.

[48]  A. Hata,et al.  Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. , 2010, Molecular cell.

[49]  F. Costa,et al.  Non‐coding RNAs: Meet thy masters , 2010, BioEssays : news and reviews in molecular, cellular and developmental biology.

[50]  Kimberly Walter,et al.  Pancreatic cancers epigenetically silence SIP1 and hypomethylate and overexpress miR-200a/200b in association with elevated circulating miR-200a and miR-200b levels. , 2010, Cancer research.

[51]  S. Cohen,et al.  MicroRNAs and gene regulatory networks: managing the impact of noise in biological systems. , 2010, Genes & development.

[52]  F. Ferrari,et al.  A MicroRNA Targeting Dicer for Metastasis Control , 2010, Cell.

[53]  P. Pandolfi,et al.  A coding-independent function of gene and pseudogene mRNAs regulates tumour biology , 2010, Nature.

[54]  A. Kazlauskas Faculty Opinions recommendation of An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. , 2010 .

[55]  W. Filipowicz,et al.  Regulation of mRNA translation and stability by microRNAs. , 2010, Annual review of biochemistry.

[56]  Gunter Meister,et al.  Argonaute proteins at a glance , 2010, Journal of Cell Science.

[57]  J. Rinn,et al.  Lin28a transgenic mice manifest size and puberty phenotypes identified in human genetic association studies , 2010, Nature Genetics.

[58]  Loyal A Goff,et al.  Differential regulation of microRNA stability. , 2010, RNA.

[59]  Jiayi Wang,et al.  CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer , 2010, Nucleic acids research.

[60]  Kotb Abdelmohsen,et al.  miR-519 suppresses tumor growth by reducing HuR levels , 2010, Cell cycle.

[61]  M. Caligiuri,et al.  miR-328 Functions as an RNA Decoy to Modulate hnRNP E2 Regulation of mRNA Translation in Leukemic Blasts , 2010, Cell.

[62]  G. Daley,et al.  Lin28: A MicroRNA Regulator with a Macro Role , 2010, Cell.

[63]  M. You,et al.  Genetic variants cis-regulating Xrn2 expression contribute to the risk of spontaneous lung tumor , 2010, Oncogene.

[64]  H. Hermeking The miR-34 family in cancer and apoptosis , 2010, Cell Death and Differentiation.

[65]  Chaohui Yu,et al.  Argonaute proteins: potential biomarkers for human colon cancer , 2010, BMC Cancer.

[66]  Keara M. Lane,et al.  Dicer1 functions as a haploinsufficient tumor suppressor. , 2009, Genes & development.

[67]  Kevin Struhl,et al.  An Epigenetic Switch Involving NF-κB, Lin28, Let-7 MicroRNA, and IL6 Links Inflammation to Cell Transformation , 2009, Cell.

[68]  B. O’Malley,et al.  Maturation of microRNA is hormonally regulated by a nuclear receptor. , 2009, Molecular cell.

[69]  H. Grosshans,et al.  Active turnover modulates mature microRNA activity in Caenorhabditis elegans , 2009, Nature.

[70]  Gretchen M. Williams,et al.  DICER1 Mutations in Familial Pleuropulmonary Blastoma , 2009, Science.

[71]  C. Joo,et al.  TUT4 in Concert with Lin28 Suppresses MicroRNA Biogenesis through Pre-MicroRNA Uridylation , 2009, Cell.

[72]  A. Hata,et al.  Regulation of MicroRNA Biogenesis: A miRiad of mechanisms , 2009, Cell Communication and Signaling.

[73]  Gideon Rechavi,et al.  RNA editing in human cancer: review , 2009, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[74]  Kevin J Luebke,et al.  Faculty Opinions recommendation of The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. , 2009 .

[75]  E. Hatano,et al.  The NF90-NF45 Complex Functions as a Negative Regulator in the MicroRNA Processing Pathway , 2009, Molecular and Cellular Biology.

[76]  D. Corcoran,et al.  Features of Mammalian microRNA Promoters Emerge from Polymerase II Chromatin Immunoprecipitation Data , 2009, PloS one.

[77]  Jung Hur,et al.  Emerging roles of RNA and RNA-binding protein network in cancer cells. , 2009, BMB reports.

[78]  M. Yamakuchi,et al.  MiR-34, SIRT1, and p53: The feedback loop , 2009, Cell cycle.

[79]  S. Dangi‐Garimella,et al.  Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let‐7 , 2009, The EMBO journal.

[80]  T. Katoh,et al.  Selective stabilization of mammalian microRNAs by 3' adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. , 2009, Genes & development.

[81]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[82]  Anna M. Krichevsky,et al.  miR-21: a small multi-faceted RNA , 2008, Journal of cellular and molecular medicine.

[83]  K. Claffey,et al.  Argonaute-2 expression is regulated by epidermal growth factor receptor and mitogen-activated protein kinase signaling and correlates with a transformed phenotype in breast cancer cells. , 2009, Endocrinology.

[84]  S. Srikantan,et al.  miR-519 reduces cell proliferation by lowering RNA-binding protein HuR levels , 2008, Proceedings of the National Academy of Sciences.

[85]  Jan-Fang Cheng,et al.  Dicer, Drosha, and outcomes in patients with ovarian cancer. , 2008, The New England journal of medicine.

[86]  Jun S. Song,et al.  Chromatin structure analyses identify miRNA promoters , 2008 .

[87]  C. Joo,et al.  Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. , 2008, Molecular cell.

[88]  F. Slack,et al.  A SNP in a let-7 microRNA complementary site in the KRAS 3' untranslated region increases non-small cell lung cancer risk. , 2008, Cancer research.

[89]  M. F. Shannon,et al.  A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. , 2008, Cancer research.

[90]  Xuemei Chen,et al.  Degradation of microRNAs by a Family of Exoribonucleases in Arabidopsis , 2008, Science.

[91]  P. Graves,et al.  Phosphorylation of Argonaute 2 at serine-387 facilitates its localization to processing bodies. , 2008, The Biochemical journal.

[92]  Carola Berking,et al.  Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer , 2008, Cell cycle.

[93]  M. Toyota,et al.  Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. , 2008, Cancer research.

[94]  Shuji Fujita,et al.  miR-21 Gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism. , 2008, Journal of molecular biology.

[95]  C. Burge,et al.  Identification of let-7-regulated oncofetal genes. , 2008, Cancer research.

[96]  A. Hata,et al.  SMAD proteins control DROSHA-mediated microRNA maturation , 2008, Nature.

[97]  Tsung-Cheng Chang,et al.  Widespread microRNA repression by Myc contributes to tumorigenesis , 2008, Nature Genetics.

[98]  Shulan Tian,et al.  Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells , 2007, Science.

[99]  G. Meister,et al.  Proteomic and functional analysis of Argonaute‐containing mRNA–protein complexes in human cells , 2007, EMBO reports.

[100]  Leonard D. Goldstein,et al.  MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype , 2007, Genome Biology.

[101]  K. Ghoshal,et al.  MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. , 2007, Gastroenterology.

[102]  Joshua J. Forman,et al.  “Myc’ed Messages”: Myc Induces Transcription of E2F1 while Inhibiting Its Translation via a microRNA Polycistron , 2007, PLoS genetics.

[103]  L. Lim,et al.  A microRNA component of the p53 tumour suppressor network , 2007, Nature.

[104]  Edwin Wang,et al.  Aberrant allele frequencies of the SNPs located in microRNA target sites are potentially associated with human cancers , 2007, Nucleic acids research.

[105]  F. Slack,et al.  The Caenorhabditis elegans pumilio homolog, puf-9, is required for the 3'UTR-mediated repression of the let-7 microRNA target gene, hbl-1. , 2007, Developmental biology.

[106]  Shuomin Zhu,et al.  MicroRNA-21 Targets the Tumor Suppressor Gene Tropomyosin 1 (TPM1)* , 2007, Journal of Biological Chemistry.

[107]  B. O’Malley,et al.  DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs , 2007, Nature Cell Biology.

[108]  B. White,et al.  The Micro-Ribonucleic Acid (miRNA) miR-206 Targets the Human Estrogen Receptor-α (ERα) and Represses ERα Messenger RNA and Protein Expression in Breast Cancer Cell Lines , 2007 .

[109]  Peng Jin,et al.  Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA. , 2007, Human molecular genetics.

[110]  Wen-Hsiung Li,et al.  Human polymorphism at microRNAs and microRNA target sites , 2007, Proceedings of the National Academy of Sciences.

[111]  H. Sültmann,et al.  The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. , 2007, Cancer research.

[112]  T. Barrette,et al.  Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. , 2007, Neoplasia.

[113]  E. Wentzel,et al.  A Hexanucleotide Element Directs MicroRNA Nuclear Import , 2007, Science.

[114]  B. White,et al.  The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. , 2007, Molecular endocrinology.

[115]  N. Rajewsky,et al.  Natural selection on human microRNA binding sites inferred from SNP data , 2006, Nature Genetics.

[116]  B. Davidson,et al.  RNA polymerase III transcribes human microRNAs , 2006, Nature Structural &Molecular Biology.

[117]  Peter A. Jones,et al.  Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. , 2006, Cancer cell.

[118]  W. Filipowicz,et al.  Relief of microRNA-Mediated Translational Repression in Human Cells Subjected to Stress , 2006, Cell.

[119]  F. Slack,et al.  Oncomirs — microRNAs with a role in cancer , 2006, Nature Reviews Cancer.

[120]  T. Ochiya,et al.  Genomic imprinting in Dicer1-hypomorphic mice , 2006, Cytogenetic and Genome Research.

[121]  Gail Mandel,et al.  Reciprocal actions of REST and a microRNA promote neuronal identity , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[122]  C. Croce,et al.  The role of microRNA genes in papillary thyroid carcinoma. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[123]  Muller Fabbri,et al.  A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. , 2005, The New England journal of medicine.

[124]  Murat Gunel,et al.  Sequence Variants in SLITRK1 Are Associated with Tourette's Syndrome , 2005, Science.

[125]  Kathryn A. O’Donnell,et al.  c-Myc-regulated microRNAs modulate E2F1 expression , 2005, Nature.

[126]  H. Horvitz,et al.  MicroRNA expression profiles classify human cancers , 2005, Nature.

[127]  A. Scadden The RISC subunit Tudor-SN binds to hyper-edited double-stranded RNA and promotes its cleavage , 2005, Nature Structural &Molecular Biology.

[128]  A. Yang,et al.  Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. , 2005, Cancer cell.

[129]  Shuang Huang,et al.  Involvement of MicroRNA in AU-Rich Element-Mediated mRNA Instability , 2005, Cell.

[130]  Shridar Ganesan,et al.  Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. , 2005, Genes & development.

[131]  Xuemei Chen,et al.  Methylation as a Crucial Step in Plant microRNA Biogenesis , 2005, Science.

[132]  Shuta Tomida,et al.  Reduced expression of Dicer associated with poor prognosis in lung cancer patients , 2005, Cancer science.

[133]  M. Pisano,et al.  Functional interaction between Smad, CREB binding protein, and p68 RNA helicase. , 2004, Biochemical and biophysical research communications.

[134]  Sanghyuk Lee,et al.  MicroRNA genes are transcribed by RNA polymerase II , 2004, The EMBO journal.

[135]  Henry Mirsky,et al.  RNA editing of a miRNA precursor. , 2004, RNA.

[136]  S. Elledge,et al.  Dicer is essential for mouse development , 2003, Nature Genetics.

[137]  Zissimos Mourelatos,et al.  The microRNA world: small is mighty. , 2003, Trends in biochemical sciences.

[138]  Alexander Rich,et al.  A-to-I RNA Editing: Recent News and Residual Mysteries* , 2003, The Journal of Biological Chemistry.

[139]  C. Croce,et al.  Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[140]  Michael Q. Zhang,et al.  The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. , 2002, Genes & development.

[141]  Brenda L Bass,et al.  RNA editing by adenosine deaminases that act on RNA. , 2002, Annual review of biochemistry.

[142]  S. Kato,et al.  Retracted: A subfamily of RNA‐binding DEAD‐box proteins acts as an estrogen receptor α coactivator through the N‐terminal activation domain (AF‐1) with an RNA coactivator, SRA , 2001 .

[143]  S. Kato,et al.  A subfamily of RNA-binding DEAD-box proteins acts as an estrogen receptor alpha coactivator through the N-terminal activation domain (AF-1) with an RNA coactivator, SRA. , 2001, The EMBO journal.

[144]  W. Cook,et al.  Accommodating haploinsufficient tumour suppressor genes in Knudson's model , 2000, Oncogene.

[145]  J. Steitz,et al.  HNS, a nuclear-cytoplasmic shuttling sequence in HuR. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[146]  B. Black,et al.  Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. , 1998, Annual review of cell and developmental biology.

[147]  R. Wharton,et al.  Binding of pumilio to maternal hunchback mRNA is required for posterior patterning in drosophila embryos , 1995, Cell.

[148]  K. McGowan,et al.  Hel-N1, an RNA-binding protein, is a ligand for an A + U rich region of the GLUT1 3' UTR. , 1995, Nucleic acids symposium series.