Multi-criteria Optimization Using the AMALGAM Software Package: Theory, Concepts, and MATLAB Implementation

The evolutionary algorithm AMALGAM implements the novel concept of adaptive multimethod search to ensure a fast, reliable and computationally ecient solution to multiobjective optimization problems. The method finds a well-distributed set of Pareto solutions within a single optimization run, and achieves an excellent performance compared to commonly used methods such as SPEA2, NSGA-II and MOEA/D. In this paper, I review the basic elements of AMALGAM, provide a pseudo-code of the algorithm, and introduce a MATLAB toolbox which provides scientists and engineers with an arsenal of options and utilities to solve multiobjective optimization problems involving (among others) multimodality, high-dimensionality, bounded parameter spaces, dynamic simulation models, and distributed multi-core computation. The AMALGAM toolbox supports parallel computing to permit inference of CPU-intensive system models, and provides convergence diagnostics and graphical output. Four dierent case studies are used to illustrate the main

[1]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[2]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[3]  M. Nowak,et al.  Evolutionary Dynamics of Biological Games , 2004, Science.

[4]  Martyn P. Clark,et al.  Multi‐objective calibration of forecast ensembles using Bayesian model averaging , 2006 .

[5]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[6]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[7]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[8]  Jasper A. Vrugt,et al.  Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB implementation , 2016, Environ. Model. Softw..

[9]  Gerrit Schoups,et al.  Sustainability of irrigated agriculture in the San Joaquin Valley, California , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[10]  A. Lemmon,et al.  The metapopulation genetic algorithm: An efficient solution for the problem of large phylogeny estimation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[11]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[12]  D. Higdon,et al.  Accelerating Markov Chain Monte Carlo Simulation by Differential Evolution with Self-Adaptive Randomized Subspace Sampling , 2009 .

[13]  Johan Alexander Huisman,et al.  Bayesian model averaging using particle filtering and Gaussian mixture modeling: Theory, concepts, and simulation experiments , 2012 .

[14]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[15]  Jasper A. Vrugt,et al.  High‐dimensional posterior exploration of hydrologic models using multiple‐try DREAM(ZS) and high‐performance computing , 2012 .

[16]  J. M. Sloughter,et al.  Probabilistic Quantitative Precipitation Forecasting Using Bayesian Model Averaging , 2007 .

[17]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[18]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[19]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[20]  Adrian E. Raftery,et al.  Weather Forecasting with Ensemble Methods , 2005, Science.

[21]  Jasper A. Vrugt,et al.  UvA-DARE ( Digital Academic Repository ) DREAM ( D ) : An adaptive Markov chain Monte Carlo simulation algorithm to solve discrete , noncontinuous , and combinatorial posterior parameter estimation problems , 2011 .

[22]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[23]  Nicola Beume,et al.  On the Complexity of Computing the Hypervolume Indicator , 2009, IEEE Transactions on Evolutionary Computation.

[24]  Martyn P. Clark,et al.  Ensemble Bayesian model averaging using Markov Chain Monte Carlo sampling , 2008 .

[25]  Jasper A Vrugt,et al.  Improved evolutionary optimization from genetically adaptive multimethod search , 2007, Proceedings of the National Academy of Sciences.

[26]  R. Lyndon While,et al.  A faster algorithm for calculating hypervolume , 2006, IEEE Transactions on Evolutionary Computation.

[27]  DebK.,et al.  A fast and elitist multiobjective genetic algorithm , 2002 .

[28]  A. Raftery,et al.  Strictly Proper Scoring Rules, Prediction, and Estimation , 2007 .

[29]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[30]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[31]  A. Raftery,et al.  Using Bayesian Model Averaging to Calibrate Forecast Ensembles , 2005 .

[32]  Michael N. Vrahatis,et al.  On the computation of all global minimizers through particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[33]  Jacob Barhen,et al.  TRUST: A deterministic algorithm for global optimization , 1997 .

[34]  H. Scheraga,et al.  Global optimization of clusters, crystals, and biomolecules. , 1999, Science.

[35]  D. Bounds New optimization methods from physics and biology , 1987, Nature.

[36]  Bruce A. Robinson,et al.  Treatment of uncertainty using ensemble methods: Comparison of sequential data assimilation and Bayesian model averaging , 2007 .

[37]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[38]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[39]  William E. Hart,et al.  Recent Advances in Memetic Algorithms , 2008 .

[40]  E. Grimit,et al.  Initial Results of a Mesoscale Short-Range Ensemble Forecasting System over the Pacific Northwest , 2002 .

[41]  Cajo J. F. ter Braak,et al.  Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation , 2008 .

[42]  Amiram Goldblum,et al.  A stochastic algorithm for global optimization and for best populations: A test case of side chains in proteins , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[43]  J. Vrugt,et al.  Toward diagnostic model calibration and evaluation: Approximate Bayesian computation , 2013 .

[44]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[45]  Assaf Naor,et al.  Rigorous location of phase transitions in hard optimization problems , 2005, Nature.

[46]  J. Vrugt,et al.  A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non‐Gaussian errors , 2010 .

[47]  Soroosh Sorooshian,et al.  Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods , 2000 .

[48]  Bruce A. Robinson,et al.  Self-Adaptive Multimethod Search for Global Optimization in Real-Parameter Spaces , 2009, IEEE Transactions on Evolutionary Computation.

[49]  J. M. Sloughter,et al.  Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging , 2010 .

[50]  H. Hersbach Decomposition of the Continuous Ranked Probability Score for Ensemble Prediction Systems , 2000 .