Ensemble Inference Methods for Models With Noisy and Expensive Likelihoods

The increasing availability of data presents an opportunity to calibrate unknown parameters which appear in complex models of phenomena in the biomedical, physical and social sciences. However, model complexity often leads to parameter-to-data maps which are expensive to evaluate and are only available through noisy approximations. This paper is concerned with the use of interacting particle systems for the solution of the resulting inverse problems for parameters. Of particular interest is the case where the available forward model evaluations are subject to rapid fluctuations, in parameter space, superimposed on the smoothly varying large scale parametric structure of interest. A motivating example from climate science is presented, and ensemble Kalman methods (which do not use the derivative of the parameter-to-data map) are shown, empirically, to perform well. Multiscale analysis is then used to analyze the behaviour of interacting particle system algorithms when rapid fluctuations, which we refer to as noise, pollute the large scale parametric dependence of the parameter-to-data map. Ensemble Kalman methods and Langevin-based methods (the latter use the derivative of the parameter-to-data map) are compared in this light. The ensemble Kalman methods are shown to behave favourably in the presence of noise in the parameter-to-data map, whereas Langevin methods are adversely affected. On the other hand, Langevin methods have the correct equilibrium distribution in the setting of noise-free forward models, whilst ensemble Kalman methods only provide an uncontrolled approximation, except in the linear case. Therefore a new class of algorithms, ensemble Gaussian process samplers, which combine the benefits of both ensemble Kalman and Langevin methods, are introduced and shown to perform favourably.

[1]  Andrew Stuart,et al.  Ensemble Kalman methods with constraints , 2019, Inverse problems.

[2]  R. Tweedie,et al.  Exponential convergence of Langevin distributions and their discrete approximations , 1996 .

[3]  Sebastian Reich,et al.  Data assimilation: The Schrödinger perspective , 2018, Acta Numerica.

[4]  A. Duncan,et al.  Noise-induced transitions in rugged energy landscapes. , 2016, Physical review. E.

[5]  G. Evensen,et al.  Revising the stochastic iterative ensemble smoother , 2019, Nonlinear Processes in Geophysics.

[6]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[7]  Andrew M. Stuart,et al.  Interacting Langevin Diffusions: Gradient Structure and Ensemble Kalman Sampler , 2019, SIAM J. Appl. Dyn. Syst..

[8]  Marie-Therese Wolfram,et al.  Parameter Estimation for Macroscopic Pedestrian Dynamics Models from Microscopic Data , 2018, SIAM J. Appl. Math..

[9]  D. Oliver,et al.  Ensemble Randomized Maximum Likelihood Method as an Iterative Ensemble Smoother , 2011, Mathematical Geosciences.

[10]  M. Ledoux,et al.  Analysis and Geometry of Markov Diffusion Operators , 2013 .

[11]  A. Stuart,et al.  Ensemble Kalman methods for inverse problems , 2012, 1209.2736.

[12]  Christina Frederick,et al.  Numerical methods for multiscale inverse problems , 2014 .

[13]  Grigorios A. Pavliotis,et al.  Multiscale Methods: Averaging and Homogenization , 2008 .

[14]  Isaac M. Held,et al.  A Gray-Radiation Aquaplanet Moist GCM. Part I: Static Stability and Eddy Scale , 2006 .

[15]  G. A. Pavliotis,et al.  Mean Field Limits for Interacting Diffusions with Colored Noise: Phase Transitions and Spectral Numerical Methods , 2019, Multiscale Model. Simul..

[16]  A. O'Hagan,et al.  Bayesian inference for the uncertainty distribution of computer model outputs , 2002 .

[17]  M. Girolami,et al.  Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[18]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..

[19]  Stefano Soatto,et al.  Deep relaxation: partial differential equations for optimizing deep neural networks , 2017, Research in the Mathematical Sciences.

[20]  M. Opper,et al.  Interacting Particle Solutions of Fokker–Planck Equations Through Gradient–Log–Density Estimation , 2020, Entropy.

[21]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[22]  D. Frierson The Dynamics of Idealized Convection Schemes and Their Effect on the Zonally Averaged Tropical Circulation , 2007 .

[23]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[24]  Wang,et al.  Replica Monte Carlo simulation of spin glasses. , 1986, Physical review letters.

[25]  Arthur Gretton,et al.  Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential Families , 2015, NIPS.

[26]  G. A. Pavliotis,et al.  Maximum likelihood drift estimation for multiscale diffusions , 2008, 0806.3248.

[27]  U Vaes,et al.  Wasserstein stability estimates for covariance-preconditioned Fokker–Planck equations , 2019, Nonlinearity.

[28]  Dave Higdon,et al.  Combining Field Data and Computer Simulations for Calibration and Prediction , 2005, SIAM J. Sci. Comput..

[29]  R. Asselin,et al.  Frequency Filter for Time Integrations , 2003 .

[30]  Alexandros A. Taflanidis,et al.  Accelerating MCMC via Kriging-based adaptive independent proposals and delayed rejection , 2019, Computer Methods in Applied Mechanics and Engineering.

[31]  G. Roberts,et al.  MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.

[32]  S. Olla Homogenization of di usion processes in random fields , 1994 .

[33]  J. Marin,et al.  Population Monte Carlo , 2004 .

[34]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[35]  Jianfeng Lu,et al.  Scaling Limit of the Stein Variational Gradient Descent: The Mean Field Regime , 2018, SIAM J. Math. Anal..

[36]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[37]  Matthias Morzfeld,et al.  Feature-based data assimilation in geophysics , 2017 .

[38]  Tapio Schneider,et al.  Calibrate, emulate, sample , 2020, J. Comput. Phys..

[39]  B. Muckenhoupt Hardy's inequality with weights , 1972 .

[40]  Mark A. Girolami,et al.  Emulation of higher-order tensors in manifold Monte Carlo methods for Bayesian Inverse Problems , 2015, J. Comput. Phys..

[41]  Ning Liu,et al.  Inverse Theory for Petroleum Reservoir Characterization and History Matching , 2008 .

[42]  Heikki Haario,et al.  Ensemble prediction and parameter estimation system: the concept , 2012 .

[43]  G. A. Pavliotis,et al.  Parameter Estimation for Multiscale Diffusions , 2007 .

[44]  Rohitash Chandra,et al.  BayesLands: A Bayesian inference approach for parameter uncertainty quantification in Badlands , 2018, Comput. Geosci..

[45]  Dilin Wang,et al.  Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm , 2016, NIPS.

[46]  Shian-Jiann Lin,et al.  What Is the Predictability Limit of Midlatitude Weather? , 2019, Journal of the Atmospheric Sciences.

[47]  C. Andrieu,et al.  The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.

[48]  Jonathan R Goodman,et al.  Ensemble samplers with affine invariance , 2010 .

[49]  Nikolas Nüsken,et al.  Affine invariant interacting Langevin dynamics for Bayesian inference , 2020, SIAM J. Appl. Dyn. Syst..

[50]  Grigorios A. Pavliotis,et al.  Mean Field Limits for Interacting Diffusions in a Two-Scale Potential , 2017, J. Nonlinear Sci..

[51]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[52]  D. Krige A statistical approach to some basic mine valuation problems on the Witwatersrand, by D.G. Krige, published in the Journal, December 1951 : introduction by the author , 1951 .

[53]  Albert C. Reynolds,et al.  Ensemble smoother with multiple data assimilation , 2013, Comput. Geosci..

[54]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[55]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[56]  P. Varandas,et al.  Rapid Mixing for the Lorenz Attractor and Statistical Limit Laws for Their Time-1 Maps , 2013, 1311.5017.

[57]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[58]  Galin L. Jones,et al.  Analyzing Markov chain Monte Carlo output , 2020 .

[59]  G. Evensen Data Assimilation: The Ensemble Kalman Filter , 2006 .

[60]  Ajay Jasra,et al.  On population-based simulation for static inference , 2007, Stat. Comput..

[61]  Tao Zhou,et al.  An adaptive surrogate modeling based on deep neural networks for large-scale Bayesian inverse problems , 2019, ArXiv.

[62]  D. Oliver,et al.  Levenberg–Marquardt forms of the iterative ensemble smoother for efficient history matching and uncertainty quantification , 2013, Computational Geosciences.

[63]  A. O'Hagan,et al.  Probabilistic sensitivity analysis of complex models: a Bayesian approach , 2004 .

[64]  P. Williams A Proposed Modification to the Robert–Asselin Time Filter* , 2009 .

[65]  Andrew Gelman,et al.  The Prior Can Often Only Be Understood in the Context of the Likelihood , 2017, Entropy.

[66]  Benedict J. Leimkuhler,et al.  Ensemble preconditioning for Markov chain Monte Carlo simulation , 2016, Statistics and Computing.

[67]  Yann LeCun,et al.  Comparing dynamics: deep neural networks versus glassy systems , 2018, ICML.

[68]  Sebastian Reich,et al.  Discrete gradients for computational Bayesian inference , 2019 .

[69]  A. Stuart,et al.  Extracting macroscopic dynamics: model problems and algorithms , 2004 .

[70]  Sebastian Reich,et al.  Fokker-Planck particle systems for Bayesian inference: Computational approaches , 2019, SIAM/ASA J. Uncertain. Quantification.

[71]  Andrew M. Stuart,et al.  Ensemble Kalman inversion: a derivative-free technique for machine learning tasks , 2018, Inverse Problems.

[72]  S. Reich A dynamical systems framework for intermittent data assimilation , 2011 .

[73]  T. Schneider,et al.  The Hydrological Cycle over a Wide Range of Climates Simulated with an Idealized GCM , 2008 .

[74]  André Robert,et al.  The Integration of a Low Order Spectral Form of the Primitive Meteorological Equations , 1966 .