Mercury chloride alters heterochromatin domain organization and nucleolar activity in mouse liver

[1]  N. L. Young,et al.  Combinations of histone post-translational modifications. , 2021, The Biochemical journal.

[2]  M. Biggiogera,et al.  The dynamics of the nuclear environment and their impact on gene function. , 2020, Journal of biochemistry.

[3]  Joseph L. Dempsey,et al.  The Role of Histone Methylation and Methyltransferases in Gene Regulation , 2019, Toxicoepigenetics.

[4]  S. Abarikwu,et al.  Aged coconut oil with a high peroxide value induces oxidative stress and tissue damage in mercury-treated rats , 2018, Journal of basic and clinical physiology and pharmacology.

[5]  Kai Yang,et al.  Nucleolar Stress: hallmarks, sensing mechanism and diseases , 2018, Cell stress.

[6]  Vaibhav A. Dixit,et al.  Curcuma longa Linn. extract and curcumin protect CYP 2E1 enzymatic activity against mercuric chloride-induced hepatotoxicity and oxidative stress: A protective approach. , 2017, Experimental and toxicologic pathology : official journal of the Gesellschaft fur Toxikologische Pathologie.

[7]  A. Pombo,et al.  Cell cycle: Continuous chromatin changes , 2017, Nature.

[8]  Jingjing Lu,et al.  Dietary luteolin attenuates chronic liver injury induced by mercuric chloride via the Nrf2/NF-κB/P53 signaling pathway in rats , 2017, Oncotarget.

[9]  Mikkel A. Algire,et al.  The SUV4-20 inhibitor A-196 verifies a role for epigenetics in genomic integrity. , 2017, Nature chemical biology.

[10]  J. Mellor,et al.  Is H3K4me3 instructive for transcription activation? , 2017, BioEssays : news and reviews in molecular, cellular and developmental biology.

[11]  A. Németh,et al.  Nucleolus association of chromosomal domains is largely maintained in cellular senescence despite massive nuclear reorganisation , 2016, bioRxiv.

[12]  H. Gong,et al.  Evaluation of candidate reference genes for RT-qPCR studies in three metabolism related tissues of mice after caloric restriction , 2016, Scientific Reports.

[13]  Jingjing Lu,et al.  Regulation of Sirt1/Nrf2/TNF-α signaling pathway by luteolin is critical to attenuate acute mercuric chloride exposure induced hepatotoxicity , 2016, Scientific Reports.

[14]  G. N. Kumar,et al.  Amelioration of cadmium- and mercury-induced liver and kidney damage in rats by genetically engineered probiotic Escherichia coli Nissle 1917 producing pyrroloquinoline quinone with oral supplementation of citric acid. , 2016, Nutrition.

[15]  C. Verrijzer,et al.  Undercover: gene control by metabolites and metabolic enzymes , 2016, Genes & development.

[16]  John J. Cole,et al.  Mapping H4K20me3 onto the chromatin landscape of senescent cells indicates a function in control of cell senescence and tumor suppression through preservation of genetic and epigenetic stability , 2016, Genome Biology.

[17]  Bingding Huang,et al.  SIRT7-dependent deacetylation of the U3-55k protein controls pre-rRNA processing , 2016, Nature Communications.

[18]  B. Ünal,et al.  A stereological and histopathological study of the effects of exposure of male rat testes to mercury vapor , 2015, Biotechnic & histochemistry : official publication of the Biological Stain Commission.

[19]  A. Moneim The neuroprotective effect of berberine in mercury-induced neurotoxicity in rats , 2015, Metabolic Brain Disease.

[20]  A. Chakraborty,et al.  An overview of pre-ribosomal RNA processing in eukaryotes , 2014, Wiley interdisciplinary reviews. RNA.

[21]  B. Fowler,et al.  Chapter 46 – Mercury , 2015 .

[22]  J. Déjardin,et al.  Constitutive heterochromatin formation and transcription in mammals , 2015, Epigenetics & Chromatin.

[23]  V. Orlando,et al.  Memories from the polycomb group proteins. , 2012, Annual review of genetics.

[24]  J. Catalan,et al.  Chromosomal dynamics of nucleolar organizer regions (NORs) in the house mouse: micro-evolutionary insights , 2011, Heredity.

[25]  M. Fussenegger,et al.  The NoRC complex mediates the heterochromatin formation and stability of silent rRNA genes and centromeric repeats , 2010, The EMBO journal.

[26]  R. Chandra,et al.  Role of vitamin E in preventing acute mercury toxicity in rat. , 2010, Environmental toxicology and pharmacology.

[27]  Daniele Zink,et al.  Nuclear architecture and gene regulation. , 2008, Biochimica et biophysica acta.

[28]  A. Briones,et al.  Low mercury concentrations cause oxidative stress and endothelial dysfunction in conductance and resistance arteries. , 2008, American journal of physiology. Heart and circulatory physiology.

[29]  D. Reinberg,et al.  Facultative heterochromatin: is there a distinctive molecular signature? , 2007, Molecular cell.

[30]  I. Grummt,et al.  The chromatin remodeling complex NoRC targets HDAC1 to the ribosomal gene promoter and represses RNA polymerase I transcription , 2002, The EMBO journal.

[31]  D. Treré AgNOR staining and quantification. , 2000, Micron.

[32]  C. Palmeira,et al.  Mercuric chloride toxicity in rat liver mitochondria and isolated hepatocytes. , 1997, Environmental toxicology and pharmacology.

[33]  M. Derenzini,et al.  Osmium ammine: review of current applications to visualize DNA in electron microscopy. , 1996, Biology of the cell.

[34]  G. Gores,et al.  Toxic injury from mercuric chloride in rat hepatocytes. , 1990, The Journal of biological chemistry.

[35]  R. Tjian,et al.  Functional cooperativity between transcription factors UBF1 and SL1 mediates human ribosomal RNA synthesis. , 1988, Science.

[36]  S. Latt,et al.  Spectral studies on 33258 Hoechst and related bisbenzimidazole dyes useful for fluorescent detection of deoxyribonucleic acid synthesis. , 1976, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[37]  W. Bernhard A new staining procedure for electron microscopical cytology. , 1969, Journal of ultrastructure research.

[38]  E. Reynolds THE USE OF LEAD CITRATE AT HIGH pH AS AN ELECTRON-OPAQUE STAIN IN ELECTRON MICROSCOPY , 1963, The Journal of cell biology.