Matrix Product States, Random Matrix Theory and the Principle of Maximum Entropy
暂无分享,去创建一个
David Pérez-García | Carlos E. González-Guillén | Benoît Collins | B. Collins | C. González-Guillén | D. Pérez-García
[1] B. Collins,et al. Integration with Respect to the Haar Measure on Unitary, Orthogonal and Symplectic Group , 2004, math-ph/0402073.
[2] A. Montanaro. Weak Multiplicativity for Random Quantum Channels , 2011, Communications in Mathematical Physics.
[3] Paolo Zanardi,et al. Typicality in random matrix product states , 2009, 0908.3877.
[4] J. Eisert,et al. Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas , 2011, Nature Physics.
[5] J. Lebowitz,et al. Long-time behavior of macroscopic quantum systems , 2010, 1003.2129.
[6] A. Acín,et al. Complexity of energy eigenstates as a mechanism for equilibration , 2011, 1108.0374.
[7] S. Haas,et al. Statistical properties of random matrix product states , 2010, 1003.5253.
[8] On the Distribution of the Wave Function for Systems in Thermal Equilibrium , 2003, quant-ph/0309021.
[9] J. Cirac,et al. Strong and weak thermalization of infinite nonintegrable quantum systems. , 2010, Physical review letters.
[10] P. Reimann. Typicality for Generalized Microcanonical Ensembles , 2007, 0710.4214.
[11] Frank Verstraete,et al. Matrix product state representations , 2006, Quantum Inf. Comput..
[12] J. Eisert,et al. Probing local relaxation of cold atoms in optical superlattices , 2008, 0808.3779.
[13] Benoit Collins,et al. Moments and cumulants of polynomial random variables on unitarygroups, the Itzykson-Zuber integral, and free probability , 2002 .
[14] F. Brandão,et al. Convergence to equilibrium under a random Hamiltonian. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.
[15] G. Pisier. ASYMPTOTIC THEORY OF FINITE DIMENSIONAL NORMED SPACES (Lecture Notes in Mathematics 1200) , 1987 .
[16] J. Eisert,et al. Exploring local quantum many-body relaxation by atoms in optical superlattices. , 2008, Physical review letters.
[17] White,et al. Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.
[18] A. J. Short,et al. Quantum mechanical evolution towards thermal equilibrium. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.
[19] M. Hastings,et al. An area law for one-dimensional quantum systems , 2007, 0705.2024.
[20] Ion Nechita,et al. Random Quantum Channels I: Graphical Calculus and the Bell State Phenomenon , 2009, 0905.2313.
[21] Vinayak,et al. Subsystem dynamics under random Hamiltonian evolution , 2011, 1107.6035.
[22] Don Weingarten,et al. Asymptotic behavior of group integrals in the limit of infinite rank , 1978 .
[23] M. B. Hastings. Entropy and entanglement in quantum ground states , 2007 .
[24] E. M. Lifshitz,et al. Course in Theoretical Physics , 2013 .
[25] M. Cramer,et al. Thermalization under randomized local Hamiltonians , 2011, 1112.5295.
[26] Edwin T. Jaynes. Prior Probabilities , 2010, Encyclopedia of Machine Learning.
[27] A. J. Short,et al. Entanglement and the foundations of statistical mechanics , 2005 .
[28] E. Jaynes. Information Theory and Statistical Mechanics , 1957 .
[29] V. Milman,et al. Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .
[30] The Itzykson–Zuber integral for U(m‖n) , 1994, hep-th/9412012.
[31] On the speed of fluctuations around thermodynamic equilibrium , 2009, 0907.1267.