Matrix Product States, Random Matrix Theory and the Principle of Maximum Entropy

Using random matrix techniques and the theory of Matrix Product States we show that reduced density matrices of quantum spin chains have generically maximum entropy.

[1]  B. Collins,et al.  Integration with Respect to the Haar Measure on Unitary, Orthogonal and Symplectic Group , 2004, math-ph/0402073.

[2]  A. Montanaro Weak Multiplicativity for Random Quantum Channels , 2011, Communications in Mathematical Physics.

[3]  Paolo Zanardi,et al.  Typicality in random matrix product states , 2009, 0908.3877.

[4]  J. Eisert,et al.  Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas , 2011, Nature Physics.

[5]  J. Lebowitz,et al.  Long-time behavior of macroscopic quantum systems , 2010, 1003.2129.

[6]  A. Acín,et al.  Complexity of energy eigenstates as a mechanism for equilibration , 2011, 1108.0374.

[7]  S. Haas,et al.  Statistical properties of random matrix product states , 2010, 1003.5253.

[8]  On the Distribution of the Wave Function for Systems in Thermal Equilibrium , 2003, quant-ph/0309021.

[9]  J. Cirac,et al.  Strong and weak thermalization of infinite nonintegrable quantum systems. , 2010, Physical review letters.

[10]  P. Reimann Typicality for Generalized Microcanonical Ensembles , 2007, 0710.4214.

[11]  Frank Verstraete,et al.  Matrix product state representations , 2006, Quantum Inf. Comput..

[12]  J. Eisert,et al.  Probing local relaxation of cold atoms in optical superlattices , 2008, 0808.3779.

[13]  Benoit Collins,et al.  Moments and cumulants of polynomial random variables on unitarygroups, the Itzykson-Zuber integral, and free probability , 2002 .

[14]  F. Brandão,et al.  Convergence to equilibrium under a random Hamiltonian. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  G. Pisier ASYMPTOTIC THEORY OF FINITE DIMENSIONAL NORMED SPACES (Lecture Notes in Mathematics 1200) , 1987 .

[16]  J. Eisert,et al.  Exploring local quantum many-body relaxation by atoms in optical superlattices. , 2008, Physical review letters.

[17]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[18]  A. J. Short,et al.  Quantum mechanical evolution towards thermal equilibrium. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  M. Hastings,et al.  An area law for one-dimensional quantum systems , 2007, 0705.2024.

[20]  Ion Nechita,et al.  Random Quantum Channels I: Graphical Calculus and the Bell State Phenomenon , 2009, 0905.2313.

[21]  Vinayak,et al.  Subsystem dynamics under random Hamiltonian evolution , 2011, 1107.6035.

[22]  Don Weingarten,et al.  Asymptotic behavior of group integrals in the limit of infinite rank , 1978 .

[23]  M. B. Hastings Entropy and entanglement in quantum ground states , 2007 .

[24]  E. M. Lifshitz,et al.  Course in Theoretical Physics , 2013 .

[25]  M. Cramer,et al.  Thermalization under randomized local Hamiltonians , 2011, 1112.5295.

[26]  Edwin T. Jaynes Prior Probabilities , 2010, Encyclopedia of Machine Learning.

[27]  A. J. Short,et al.  Entanglement and the foundations of statistical mechanics , 2005 .

[28]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[29]  V. Milman,et al.  Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .

[30]  The Itzykson–Zuber integral for U(m‖n) , 1994, hep-th/9412012.

[31]  On the speed of fluctuations around thermodynamic equilibrium , 2009, 0907.1267.