A constitutive model for ferroelectric PZT ceramics under uniaxial loading

Our aim is the presentation of a macroscopic constitutive model for the purpose of engineering reliability analysis of piezoceramic components designed for so-called `smart' electromechanical sensor and actuator applications. Typically, such components are made of materials like ferroelectric lead zirconate titanate ceramics which exhibit significant history-dependent nonlinearities such as the well known dielectric, butterfly and ferroelastic hystereses due to switching processes. Furthermore, phase transitions lead to distinct thermo-electromechanical coupling properties and rate effects are present. In a first step, we propose a constitutive framework capable of representing general thermo-electromechanical processes. This framework makes use of internal variables and is thermodynamically consistent with the Clausius-Duhem inequality for all admissible processes. Next, we focus on uniaxial electromechanical loadings and introduce microscopically motivated internal variables and their evolution equations. In order to verify the underlying a priori assumptions, we discuss extensively the numerically calculated model response to standard electromechanical loading paths. It turns out that the model represents the typical hystereses mentioned above as well as mechanical depolarization and other nonlinear electromechanical coupling phenomena. Furthermore, the model response exhibits rate effects.

[1]  M. Dunn The effects of crack face boundary conditions on the fracture mechanics of piezoelectric solids , 1994 .

[2]  Zhigang Suo,et al.  Fracture mechanics for piezoelectric ceramics , 1992 .

[3]  L. Eric Cross,et al.  Ferroelectric Ceramics: Tailoring Properties for Specific Applications , 1993 .

[4]  Yongzhong Huo,et al.  Modeling of domain switching in polycrystalline ferroelectric ceramics , 1997 .

[5]  Gérard A. Maugin,et al.  Continuum Mechanics of Electromagnetic Solids , 1989 .

[6]  K. Bathe,et al.  An Iterative Finite Element Procedure for the Analysis of Piezoelectric Continua , 1995 .

[7]  Horacio Sosa,et al.  On the fracture mechanics of piezoelectric solids , 1992 .

[8]  P. S. Peercy,et al.  One dimensional dynamic electromechanical constitutive relations of ferroelectric materials , 1979 .

[9]  Gérard A. Maugin,et al.  Thermodynamical formulation for coupled electromechanical hysteresis effects. III: Parameter identification , 1989 .

[10]  V. Z. Parton,et al.  Electromagnetoelasticity: Piezoelectrics and Electrically Conductive Solids , 1988 .

[11]  Internal Constraints and Constitutive Laws , 1989 .

[12]  L. Eric Cross,et al.  Electric Fatigue in Lead Zirconate Titanate Ceramics , 1994 .

[13]  Sang-joo Kim,et al.  Microcracking and electric fatigue of polycrystalline ferroelectric ceramics , 1996 .

[14]  R. Newnham REVIEW ARTICLE: Electroceramics , 1989 .

[15]  Y. E. Pak,et al.  Linear electro-elastic fracture mechanics of piezoelectric materials , 1992 .

[16]  Peter J. Chen Three dimensional dynamic electromechanical constitutive relations for ferroelectric materials , 1980 .

[17]  P. J. Chen,et al.  One dimensional polar responses of the electrooptic ceramic PLZT 7/65/35 due to domain switching , 1981 .

[18]  Leslie E. Cross,et al.  THE EXTRINSIC NATURE OF NONLINEAR BEHAVIOR OBSERVED IN LEAD ZIRCONATE TITANATE FERROELECTRIC CERAMIC , 1991 .

[19]  Natarajan Shankar,et al.  A Fully Coupled Constitutive Model for Electrostrictive Ceramic Materials , 1994 .

[20]  L. E. Cross,et al.  Effects of porosity on electric fatigue behaviour in PLZT and PZT ferroelectric ceramics , 1993 .

[21]  L. E. Cross,et al.  Ferroelectric Materials for Electromechanical Transducer Applications , 1995 .

[22]  Marc Kamlah,et al.  Phenomenological modeling of the non-linear electro-mechanical coupling in ferroelectrics , 1999 .

[23]  Gérard A. Maugin,et al.  Thermodynamical formulation for coupled electromechanical hysteresis effects—I. Basic equations , 1988 .

[24]  Thomas M. Michelitsch,et al.  A simple model for the nonlinear material behavior of ferroelectrics , 1998 .

[25]  Z. Suo,et al.  Fracture mechanics for the design of ceramic multilayer actuators , 1996 .

[26]  Anthony G. Evans,et al.  Nonlinear Deformation of Ferroelectric Ceramics , 1993 .

[27]  Q. Jiang,et al.  Modeling of domain switching in ferroelectric ceramics : An example , 1998 .

[28]  Christopher S. Lynch,et al.  The effect of uniaxial stress on the electro-mechanical response of 8/65/35 PLZT , 1996 .

[29]  S. Kumar,et al.  Crack propagation in piezoelectric materials under combined mechanical and electrical loadings , 1995 .

[30]  Robert M. McMeeking,et al.  Electrostrictive stresses near crack-like flaws , 1989 .

[31]  Yongqiang Wang Numerical simulation on fatigue behavior of ferroelectric ceramics , 1997 .

[32]  L. E. Cross,et al.  Smart Ferroelectrics for Acoustic and Vibration Control , 1994 .

[33]  Christopher S. Lynch,et al.  Ferroelectric/ferroelastic interactions and a polarization switching model , 1995 .

[34]  Zhigang Suo,et al.  Cracking in ceramic actuators caused by electrostriction , 1994 .

[35]  T. J. Tucker,et al.  Determination of the polar equilibrium properties of the ferroelectric ceramic PZT 65/35 , 1981 .