A constitutive model for ferroelectric PZT ceramics under uniaxial loading
暂无分享,去创建一个
[1] M. Dunn. The effects of crack face boundary conditions on the fracture mechanics of piezoelectric solids , 1994 .
[2] Zhigang Suo,et al. Fracture mechanics for piezoelectric ceramics , 1992 .
[3] L. Eric Cross,et al. Ferroelectric Ceramics: Tailoring Properties for Specific Applications , 1993 .
[4] Yongzhong Huo,et al. Modeling of domain switching in polycrystalline ferroelectric ceramics , 1997 .
[5] Gérard A. Maugin,et al. Continuum Mechanics of Electromagnetic Solids , 1989 .
[6] K. Bathe,et al. An Iterative Finite Element Procedure for the Analysis of Piezoelectric Continua , 1995 .
[7] Horacio Sosa,et al. On the fracture mechanics of piezoelectric solids , 1992 .
[8] P. S. Peercy,et al. One dimensional dynamic electromechanical constitutive relations of ferroelectric materials , 1979 .
[9] Gérard A. Maugin,et al. Thermodynamical formulation for coupled electromechanical hysteresis effects. III: Parameter identification , 1989 .
[10] V. Z. Parton,et al. Electromagnetoelasticity: Piezoelectrics and Electrically Conductive Solids , 1988 .
[11] Internal Constraints and Constitutive Laws , 1989 .
[12] L. Eric Cross,et al. Electric Fatigue in Lead Zirconate Titanate Ceramics , 1994 .
[13] Sang-joo Kim,et al. Microcracking and electric fatigue of polycrystalline ferroelectric ceramics , 1996 .
[14] R. Newnham. REVIEW ARTICLE: Electroceramics , 1989 .
[15] Y. E. Pak,et al. Linear electro-elastic fracture mechanics of piezoelectric materials , 1992 .
[16] Peter J. Chen. Three dimensional dynamic electromechanical constitutive relations for ferroelectric materials , 1980 .
[17] P. J. Chen,et al. One dimensional polar responses of the electrooptic ceramic PLZT 7/65/35 due to domain switching , 1981 .
[18] Leslie E. Cross,et al. THE EXTRINSIC NATURE OF NONLINEAR BEHAVIOR OBSERVED IN LEAD ZIRCONATE TITANATE FERROELECTRIC CERAMIC , 1991 .
[19] Natarajan Shankar,et al. A Fully Coupled Constitutive Model for Electrostrictive Ceramic Materials , 1994 .
[20] L. E. Cross,et al. Effects of porosity on electric fatigue behaviour in PLZT and PZT ferroelectric ceramics , 1993 .
[21] L. E. Cross,et al. Ferroelectric Materials for Electromechanical Transducer Applications , 1995 .
[22] Marc Kamlah,et al. Phenomenological modeling of the non-linear electro-mechanical coupling in ferroelectrics , 1999 .
[23] Gérard A. Maugin,et al. Thermodynamical formulation for coupled electromechanical hysteresis effects—I. Basic equations , 1988 .
[24] Thomas M. Michelitsch,et al. A simple model for the nonlinear material behavior of ferroelectrics , 1998 .
[25] Z. Suo,et al. Fracture mechanics for the design of ceramic multilayer actuators , 1996 .
[26] Anthony G. Evans,et al. Nonlinear Deformation of Ferroelectric Ceramics , 1993 .
[27] Q. Jiang,et al. Modeling of domain switching in ferroelectric ceramics : An example , 1998 .
[28] Christopher S. Lynch,et al. The effect of uniaxial stress on the electro-mechanical response of 8/65/35 PLZT , 1996 .
[29] S. Kumar,et al. Crack propagation in piezoelectric materials under combined mechanical and electrical loadings , 1995 .
[30] Robert M. McMeeking,et al. Electrostrictive stresses near crack-like flaws , 1989 .
[31] Yongqiang Wang. Numerical simulation on fatigue behavior of ferroelectric ceramics , 1997 .
[32] L. E. Cross,et al. Smart Ferroelectrics for Acoustic and Vibration Control , 1994 .
[33] Christopher S. Lynch,et al. Ferroelectric/ferroelastic interactions and a polarization switching model , 1995 .
[34] Zhigang Suo,et al. Cracking in ceramic actuators caused by electrostriction , 1994 .
[35] T. J. Tucker,et al. Determination of the polar equilibrium properties of the ferroelectric ceramic PZT 65/35 , 1981 .