Dropout non-negative matrix factorization

Non-negative matrix factorization (NMF) has received lots of attention in research communities like document clustering, image analysis, and collaborative filtering. However, NMF-based approaches often suffer from overfitting and interdependent features which are caused by latent feature co-adaptation during the learning process. Most of the existing improved methods of NMF take advantage of side information or task-specific knowledge. However, they are not always available. Dropout has been widely recognized as a powerful strategy for preventing co-adaptation in deep neural network training. What is more, it requires no prior knowledge and brings no additional terms or transformations into the original loss function. In this paper, we introduce the dropout strategy into NMF and propose a dropout NMF algorithm. Specifically, we first design a simple dropout strategy that fuses a dropout mask in the NMF framework to prevent feature co-adaptation. Then a sequential dropout strategy is further proposed to reduce randomness and to achieve robustness. Experimental results on multiple datasets confirm that our dropout NMF methods can not only improve NMF but also further improve existing representative matrix factorization models.

[1]  Sameer A. Nene,et al.  Columbia Object Image Library (COIL100) , 1996 .

[2]  Koh Takeuchi,et al.  Non-Negative Multiple Matrix Factorization , 2013, IJCAI.

[3]  Yann LeCun,et al.  Regularization of Neural Networks using DropConnect , 2013, ICML.

[4]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[5]  Brendan J. Frey,et al.  Adaptive dropout for training deep neural networks , 2013, NIPS.

[6]  Tao Li,et al.  A Non-negative Matrix Tri-factorization Approach to Sentiment Classification with Lexical Prior Knowledge , 2009, ACL.

[7]  Nicoletta Del Buono,et al.  Non-negative Matrix Tri-Factorization for co-clustering: An analysis of the block matrix , 2015, Inf. Sci..

[8]  Nitish Srivastava,et al.  Improving neural networks by preventing co-adaptation of feature detectors , 2012, ArXiv.

[9]  David M. Blei,et al.  Factorization Meets the Item Embedding: Regularizing Matrix Factorization with Item Co-occurrence , 2016, RecSys.

[10]  Enhong Chen,et al.  Word Embedding Revisited: A New Representation Learning and Explicit Matrix Factorization Perspective , 2015, IJCAI.

[11]  Ning Chen,et al.  Dropout Training for Support Vector Machines , 2014, AAAI.

[12]  D. Perrett,et al.  Recognition of objects and their component parts: responses of single units in the temporal cortex of the macaque. , 1994, Cerebral cortex.

[13]  Xing Xie,et al.  GeoMF: joint geographical modeling and matrix factorization for point-of-interest recommendation , 2014, KDD.

[14]  Yan Liu,et al.  Collaborative Topic Regression with Social Matrix Factorization for Recommendation Systems , 2012, ICML.

[15]  Hiroshi Mamitsuka,et al.  Instance-Wise Weighted Nonnegative Matrix Factorization for Aggregating Partitions with Locally Reliable Clusters , 2015, IJCAI.

[16]  Xiaohui Yan,et al.  Clustering short text using Ncut-weighted non-negative matrix factorization , 2012, CIKM.

[17]  Karthik Devarajan,et al.  Nonnegative Matrix Factorization: An Analytical and Interpretive Tool in Computational Biology , 2008, PLoS Comput. Biol..

[18]  P. Paatero,et al.  Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values† , 1994 .

[19]  Seungjin Choi,et al.  Weighted Nonnegative Matrix Co-Tri-Factorization for Collaborative Prediction , 2009, ACML.

[20]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[21]  Pablo Tamayo,et al.  Metagenes and molecular pattern discovery using matrix factorization , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[22]  T. Landauer,et al.  Indexing by Latent Semantic Analysis , 1990 .

[23]  Chonghui Guo,et al.  Incremental Affinity Propagation Clustering Based on Message Passing , 2014, IEEE Transactions on Knowledge and Data Engineering.

[24]  Mark Liberman,et al.  THE TDT-2 TEXT AND SPEECH CORPUS , 1999 .

[25]  Zoubin Ghahramani,et al.  Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning , 2015, ICML.

[26]  Yalou Huang,et al.  Dropout Non-negative Matrix Factorization for Independent Feature Learning , 2016, NLPCC/ICCPOL.

[27]  Ken Lang,et al.  NewsWeeder: Learning to Filter Netnews , 1995, ICML.

[28]  Ryan P. Adams,et al.  Learning Ordered Representations with Nested Dropout , 2014, ICML.

[29]  Zhongfei Zhang,et al.  Dropout Training of Matrix Factorization and Autoencoder for Link Prediction in Sparse Graphs , 2015, SDM.

[30]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[31]  Hyunsoo Kim,et al.  Sparse Non-negative Matrix Factorizations via Alternating Non-negativity-constrained Least Squares , 2006 .

[32]  Chris H. Q. Ding,et al.  Bridging Domains with Words: Opinion Analysis with Matrix Tri-factorizations , 2010, SDM.

[33]  Erkki Oja,et al.  Clustering by Nonnegative Matrix Factorization Using Graph Random Walk , 2012, NIPS.

[34]  Ali Farhadi,et al.  Unsupervised Deep Embedding for Clustering Analysis , 2015, ICML.

[35]  Bo Zhang,et al.  Adaptive Dropout Rates for Learning with Corrupted Features , 2015, IJCAI.

[36]  Chris H. Q. Ding,et al.  Solving Consensus and Semi-supervised Clustering Problems Using Nonnegative Matrix Factorization , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[37]  Thomas S. Huang,et al.  Graph Regularized Nonnegative Matrix Factorization for Data Representation. , 2011, IEEE transactions on pattern analysis and machine intelligence.

[38]  Tamir Hazan,et al.  Non-negative tensor factorization with applications to statistics and computer vision , 2005, ICML.

[39]  Kehong Yuan,et al.  Sparse p-norm Nonnegative Matrix Factorization for clustering gene expression data , 2008, Int. J. Data Min. Bioinform..

[40]  Koh Takeuchi,et al.  Non-negative Multiple Tensor Factorization , 2013, 2013 IEEE 13th International Conference on Data Mining.

[41]  Katia P. Sycara,et al.  Nonnegative Matrix Tri-Factorization with Graph Regularization for Community Detection in Social Networks , 2015, IJCAI.

[42]  Chih-Jen Lin,et al.  Projected Gradient Methods for Nonnegative Matrix Factorization , 2007, Neural Computation.

[43]  Sunita Sarawagi,et al.  Discriminative Methods for Multi-labeled Classification , 2004, PAKDD.

[44]  Patrik O. Hoyer,et al.  Non-negative Matrix Factorization with Sparseness Constraints , 2004, J. Mach. Learn. Res..

[45]  Fillia Makedon,et al.  Fast Nonnegative Matrix Tri-Factorization for Large-Scale Data Co-Clustering , 2011, IJCAI.