On the valences of bonds in the oxycomplexes of Sn(2+).

The differences between Wang and Liebau's [Wang & Liebau (2007). Acta Cryst. B63, 216-228] stoichiometric valence (atomic valence) and structural valence (bond-valence sum) observed in Sn(2+) and other lone-pair cation oxycomplexes arises from their use of the Brese & O'Keeffe bond-valence parameters which are based on the assumption that the bond-valence parameter b = 0.37 A applies to all bond types. According to the theory of the bond-valence model, the bond-valence sum is necessarily equal to the ionic charge, implying that in the Wang and Liebau model the ionic charges are equal to the structural valence. If charges are chosen equal to the stoichiometric valence, the bond-valence parameters for Sn(2+)-O bonds are R(0) = 1.859 A, b = 0.55 A. While both models are theoretically valid, only the standard model relates bond valences to the concept of atomic valence. Wang and Liebau's suggestion that cation-lone-pair bonds make a significant contribution to the valence sums is confirmed, but such bonds cannot account for the full difference between the stoichiometric and structural valences because they are present in only a few compounds.

[1]  F. Liebau,et al.  Stoichiometric valence and structural valence--two different sides of the same coin: "bonding power". , 2009, Chemistry.

[2]  F. Liebau,et al.  Stoichiometric valence versus structural valence: Conclusions drawn from a study of the influence of polyhedron distortion on bond valence sums , 2005 .

[3]  P. Burns,et al.  Revised Tl(I)–O bond valence parameters and the structures of thallous dichromate and thallous uranyl phosphate hydrate , 2004 .

[4]  V. Urusov Theoretical analysis and empirical manifestation of the distortion theorem , 2003 .

[5]  S. Krivovichev,et al.  Are the compressive effects of encapsulation an artifact of the bond valence parameters? , 2001 .

[6]  F. Liebau,et al.  Influence of lone-pair electrons of cations on bond-valence parameters , 1996 .

[7]  C. Röhr Darstellung und Kristallstruktur von K4[SnO3] , 1995 .

[8]  P. Černý,et al.  The crystal structure of foordite , 1988 .

[9]  Z. G. Zhang,et al.  Resonance bond numbers: A graph-theoretic study of bond length variations in silicate crystals , 1988 .

[10]  R. Hoppe,et al.  Über Oxostannate(II). V. Na4[SnO3] – das erste Oxostannat(II) mit „Inselstruktur” , 1984 .

[11]  R. Nesper,et al.  Hydroxoverbindungen. 10. Über die Natriumoxohydroxostannate(II) Na4[Sn4O(OH)10] und Na2[Sn2O(OH)4] , 1983 .

[12]  R. Hoppe,et al.  Über Oxostannate(II). III. K2Sn2O3, Rb2Sn2O3 und Cs2Sn2O3 – ein Vergleich , 1982 .

[13]  R. Hoppe,et al.  Das erste Oxostannat(II): K2Sn2O3 , 1978 .

[14]  L. Pauling THE PRINCIPLES DETERMINING THE STRUCTURE OF COMPLEX IONIC CRYSTALS , 1929 .