Integral design method for simple and small Mars lander system using membrane aeroshell
暂无分享,去创建一个
Shinichi Nakasuka | Hiroyuki Maezawa | Ryohei Takahashi | Akifumi Wachi | Yuki Koshiro | Ryo Sakagami | Yasko Kasai | S. Nakasuka | Ryo Sakagami | Ryohei Takahashi | Akifumi Wachi | Yukiko Koshiro | H. Maezawa | Y. Kasai
[1] M. Blosser. Development of Metallic Thermal Protection Systems for the Reusable Launch Vehicle , 1996 .
[2] M. Ashby,et al. Deformation and fracture of aluminium foams , 2000 .
[3] M. S. Grahne,et al. Development and evaluation of the mars pathfinder inflatable airbag landing system , 2002 .
[4] Chris Morgan,et al. Improved inflatable landing systems for low cost planetary landers , 2003 .
[5] R. Manning,et al. Mars Exploration Entry, Descent, and Landing Challenges , 2007 .
[6] Takashi Abe,et al. Study on Low-ballistic-coefficient Atmospheric-entry Technology Using Flexible Aeroshell , 2009 .
[7] Mitsuhito Komatsu,et al. University of Tokyo Nano Satellite Project “PRISM” , 2009 .
[8] Mitsuhito Komatsu,et al. Evolution from education to practical use in University of Tokyo's nano-satellite activities , 2010 .
[9] Miguel de Val-Borro,et al. Herschel/HIFI observations of Mars: First detection of O2 at submillimetre wavelengths and upper limits on HCl and H2O2 , 2010, 1007.1301.
[10] Rainer Sandau,et al. Status and trends of small satellite missions for Earth observation , 2010 .
[11] Kojiro Suzuki,et al. Hypersonic Wind Tunnel Test of a Flare-type Membrane Aeroshell for Atmospheric Entry Capsules , 2010 .
[12] Sydney Do,et al. Feasibility Study of an Airbag-Based Crew Impact Attenuation System for the Orion MPCV , 2011 .
[13] R. Anderson,et al. Mars Science Laboratory Mission and Science Investigation , 2012 .
[14] Seiko Shirasaka,et al. Toward strategic development of hodoyoshi microsatellite using assurance cases , 2012 .
[15] Karl T. Edquist,et al. Red Dragon: Low-cost Access to the Surface of Mars using Commercial Capabilities , 2012 .
[16] Yasunori Nagata,et al. Attitude dynamics for flare-type membrane aeroshell capsule in reentry flight experiment , 2013 .
[17] Shinichi Nakasuka,et al. 50kg-class Deep Space Exploration Technology Demonstration Micro-spacecraft PROCYON , 2014 .
[18] S. Fukuda,et al. SLIM: Small explorer for technology demonstration of lunar pinpoint landing , 2014 .
[19] E. Millour,et al. The Mars Climate Database (MCD version 5.2) , 2015 .
[20] Joel Krajewski,et al. MarCO: CubeSats to Mars in 2016 , 2015 .
[21] C. Faber,et al. A method for inverting the touchdown shock of the Philae lander on comet 67P/Churyumov-Gerasimenko , 2015 .
[22] Kojiro Suzuki,et al. Development of flare-type inflatable membrane aeroshell for reentry demonstration from LEO , 2015 .
[23] T. Inamori,et al. Initial Operation Results of a 50kg-class Deep Space Exploration Micro-Spacecraft PROCYON , 2015 .
[24] Shuichi Matsumoto,et al. Orbit Plan and Mission Design for Mars EDL and Surface Exploration Technologies Demonstrator , 2016 .
[25] H. Koizumi,et al. Total Impulse Increase of a Micro-Solid Rocket Using a Stack of B/KNO3 Pellets , 2016 .
[26] Takashi Abe,et al. Aerodecelerator Performance of Flare-Type Membrane Inflatable Vehicle in Suborbital Reentry , 2017 .
[27] Kazuhiko Yamada,et al. Aerodynamic Heating Prediction of an Inflatable Reentry Vehicle in a Hypersonic Wind Tunnel , 2017 .