Do we know anything about how left–right asymmetry is first established in the vertebrate embryo?

[1]  W. Marshall,et al.  De Novo Formation of Left–Right Asymmetry by Posterior Tilt of Nodal Cilia , 2005, PLoS biology.

[2]  N. Hirokawa,et al.  Mechanism of Nodal Flow: A Conserved Symmetry Breaking Event in Left-Right Axis Determination , 2005, Cell.

[3]  Á. Raya,et al.  Retinoic acid signalling links left–right asymmetric patterning and bilaterally symmetric somitogenesis in the zebrafish embryo , 2005, Nature.

[4]  N. Hirokawa,et al.  FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left–right determination , 2005, Nature.

[5]  H. Yost,et al.  Kupffer's vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut , 2005, Development.

[6]  M. Levin The embryonic origins of left-right asymmetry. , 2004, Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists.

[7]  O. Piro,et al.  Fluid-dynamical basis of the embryonic development of left-right asymmetry in vertebrates. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Lee Niswander,et al.  Hedgehog signalling in the mouse requires intraflagellar transport proteins , 2003, Nature.

[9]  Michael Levin,et al.  Fusicoccin signaling reveals 14-3-3 protein function as a novel step in left-right patterning during amphibian embryogenesis , 2003, Development.

[10]  M. Brueckner,et al.  Two Populations of Node Monocilia Initiate Left-Right Asymmetry in the Mouse , 2003, Cell.

[11]  Jing Zhou,et al.  Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells , 2003, Nature Genetics.

[12]  K. L. Kramer,et al.  PKCγ Regulates Syndecan-2 Inside-Out Signaling during Xenopus Left-Right Development , 2002, Cell.

[13]  C. Viebahn,et al.  FGF8 Acts as a Right Determinant during Establishment of the Left-Right Axis in the Rabbit , 2002, Current Biology.

[14]  M. Mercola,et al.  Asymmetries in H+/K+-ATPase and Cell Membrane Potentials Comprise a Very Early Step in Left-Right Patterning , 2002, Cell.

[15]  J. Brennan,et al.  Nodal activity in the node governs left-right asymmetry. , 2002, Genes & development.

[16]  Miguel Armengot,et al.  Mutations in the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Y. Saijoh,et al.  Determination of left–right patterning of the mouse embryo by artificial nodal flow , 2002, Nature.

[18]  C. Tabin,et al.  Left–right development: Conserved function for embryonic nodal cilia , 2002, Nature.

[19]  B. Dworniczak,et al.  The Ion Channel Polycystin-2 Is Required for Left-Right Axis Determination in Mice , 2002, Current Biology.

[20]  S. Somlo,et al.  Polycystin-2 is an intracellular calcium release channel , 2002, Nature Cell Biology.

[21]  H. Lehrach,et al.  Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left–right asymmetry , 2002, Nature Genetics.

[22]  K. R. Spring,et al.  Bending the MDCK Cell Primary Cilium Increases Intracellular Calcium , 2001, The Journal of Membrane Biology.

[23]  M. Brueckner,et al.  Cilia propel the embryo in the right direction. , 2001, American journal of medical genetics.

[24]  Andrew P. McMahon,et al.  Smoothened Mutants Reveal Redundant Roles for Shh and Ihh Signaling Including Regulation of L/R Asymmetry by the Mouse Node , 2001, Cell.

[25]  J. Lafitte,et al.  Axonemal dynein intermediate-chain gene (DNAI1) mutations result in situs inversus and primary ciliary dyskinesia (Kartagener syndrome). , 2001, American journal of human genetics.

[26]  W. Richards,et al.  The Oak Ridge Polycystic Kidney (orpk) disease gene is required for left-right axis determination. , 2000, Development.

[27]  C. Rankin,et al.  Regulation of left-right patterning in mice by growth/differentiation factor-1 , 2000, Nature Genetics.

[28]  D. Supp,et al.  Targeted deletion of the ATP binding domain of left-right dynein confirms its role in specifying development of left-right asymmetries. , 1999, Development.

[29]  S. Amselem,et al.  Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. , 1999, American journal of human genetics.

[30]  M. Mercola,et al.  Gap junction-mediated transfer of left-right patterning signals in the early chick blastoderm is upstream of Shh asymmetry in the node , 1999 .

[31]  N. Hirokawa,et al.  Randomization of Left–Right Asymmetry due to Loss of Nodal Cilia Generating Leftward Flow of Extraembryonic Fluid in Mice Lacking KIF3B Motor Protein , 1999, Cell.

[32]  N. Hirokawa,et al.  Abnormal nodal flow precedes situs inversus in iv and inv mice. , 1999, Molecular cell.

[33]  G. Martin,et al.  Differences in left-right axis pathways in mouse and chick: functions of FGF8 and SHH. , 1999, Science.

[34]  N. Hirokawa,et al.  Left-Right Asymmetry and Kinesin Superfamily Protein KIF3A: New Insights in Determination of Laterality and Mesoderm Induction by kif3A− /− Mice Analysis , 1999, The Journal of cell biology.

[35]  L. Goldstein,et al.  Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[36]  N. Hirokawa,et al.  Randomization of Left–Right Asymmetry due to Loss of Nodal Cilia Generating Leftward Flow of Extraembryonic Fluid in Mice Lacking KIF3B Motor Protein , 1998, Cell.

[37]  M. Mercola,et al.  Gap junctions are involved in the early generation of left-right asymmetry. , 1998, Developmental biology.

[38]  M. Levin,et al.  Two molecular models of initial left-right asymmetry generation. , 1997, Medical hypotheses.

[39]  D. Supp,et al.  Mutation of an axonemal dynein affects left–right asymmetry in inversus viscerum mice , 1997, Nature.

[40]  J. Cooke,et al.  Left/right patterning signals and the independent regulation of different aspects of situs in the chick embryo. , 1997, Developmental biology.

[41]  D. Supp,et al.  Conserved left–right asymmetry of nodal expression and alterations in murine situs inversus , 1996, Nature.

[42]  Y. Saijoh,et al.  Left–right asymmetric expression of the TGFβ-family member lefty in mouse embryos , 1996, Nature.

[43]  J. Collignon,et al.  Relationship between asymmetric nodal expression and the direction of embryonic turning , 1996, Nature.

[44]  N. Brown,et al.  Cell proliferation in mammalian gastrulation: The ventral node and notochord are relatively quiescent , 1996, Developmental dynamics : an official publication of the American Association of Anatomists.

[45]  K. Umesono,et al.  Activin and its receptors during gastrulation and the later phases of mesoderm development in the chick embryo. , 1995, Developmental biology.

[46]  C. Tabin,et al.  A molecular pathway determining left-right asymmetry in chick embryogenesis , 1995, Cell.

[47]  J. Carson,et al.  Morphogenesis of the murine node and notochordal plate , 1994, Developmental dynamics : an official publication of the American Association of Anatomists.

[48]  L. Wolpert,et al.  The development of handedness in left/right asymmetry. , 1990, Development.

[49]  B. Afzelius A human syndrome caused by immotile cilia. , 1976, Science.

[50]  B. Yoder,et al.  Disruption of IFT results in both exocrine and endocrine abnormalities in the pancreas of Tg737orpk mutant mice , 2005, Laboratory Investigation.

[51]  C. Tabin,et al.  A two-cilia model for vertebrate left-right axis specification. , 2003, Genes & development.

[52]  P. Igarashi,et al.  Genetics and Pathogenesis of Polycystic Kidney Disease , 2002 .

[53]  H Joseph Yost,et al.  Ectodermal syndecan-2 mediates left-right axis formation in migrating mesoderm as a cell-nonautonomous Vg1 cofactor. , 2002, Developmental cell.