A robust adaptive clustering analysis method for automatic identification of clusters

Identifying the optimal cluster number and generating reliable clustering results are necessary but challenging tasks in cluster analysis. The effectiveness of clustering analysis relies not only on the assumption of cluster number but also on the clustering algorithm employed. This paper proposes a new clustering analysis method that identifies the desired cluster number and produces, at the same time, reliable clustering solutions. It first obtains many clustering results from a specific algorithm, such as Fuzzy C-Means (FCM), and then integrates these different results as a judgement matrix. An iterative graph-partitioning process is implemented to identify the desired cluster number and the final result. The proposed method is a robust approach as it is demonstrated its effectiveness in clustering 2D data sets and multi-dimensional real-world data sets of different shapes. The method is compared with cluster validity analysis and other methods such as spectral clustering and cluster ensemble methods. The method is also shown efficient in mesh segmentation applications. The proposed method is also adaptive because it not only works with the FCM algorithm but also other clustering methods like the k-means algorithm.

[1]  KarypisGeorge,et al.  Multilevelk-way Partitioning Scheme for Irregular Graphs , 1998 .

[2]  Gerardo Beni,et al.  A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Doheon Lee,et al.  On cluster validity index for estimation of the optimal number of fuzzy clusters , 2004, Pattern Recognit..

[4]  M. P. Windham Cluster validity for fuzzy clustering algorithms , 1981 .

[5]  Boudewijn P. F. Lelieveldt,et al.  A new cluster validity index for the fuzzy c-mean , 1998, Pattern Recognit. Lett..

[6]  James C. Bezdek,et al.  Some new indexes of cluster validity , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[7]  Paula Brito,et al.  A partitional clustering algorithm validated by a clustering tendency index based on graph theory , 2006, Pattern Recognit..

[8]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[9]  Ayellet Tal,et al.  Hierarchical mesh decomposition using fuzzy clustering and cuts , 2003, ACM Trans. Graph..

[10]  Ravi Kothari,et al.  On finding the number of clusters , 1999, Pattern Recognit. Lett..

[11]  Yair Weiss,et al.  Segmentation using eigenvectors: a unifying view , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[12]  Sandro Vega-Pons,et al.  Weighted Cluster Ensemble Using a Kernel Consensus Function , 2008, CIARP.

[13]  Brian W. Kernighan,et al.  An efficient heuristic procedure for partitioning graphs , 1970, Bell Syst. Tech. J..

[14]  Miin-Shen Yang,et al.  A cluster validity index for fuzzy clustering , 2005, Pattern Recognit. Lett..

[15]  Ana L. N. Fred,et al.  Combining multiple clusterings using evidence accumulation , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Sandro Vega-Pons,et al.  Clustering Ensemble Method for Heterogeneous Partitions , 2009, CIARP.

[17]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[18]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[19]  George Karypis,et al.  Multilevel k-way Partitioning Scheme for Irregular Graphs , 1998, J. Parallel Distributed Comput..

[20]  Kenneth G. Manton,et al.  Fuzzy Cluster Analysis , 2005 .

[21]  Haiyoung Lee A Cluster validity Index for Fuzzy Clustering , 1999 .

[22]  Michalis Vazirgiannis,et al.  c ○ 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. On Clustering Validation Techniques , 2022 .

[23]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[24]  Xianggui Qu,et al.  Multivariate Data Analysis , 2007, Technometrics.

[25]  Joydeep Ghosh,et al.  Cluster Ensembles --- A Knowledge Reuse Framework for Combining Multiple Partitions , 2002, J. Mach. Learn. Res..

[26]  Csaba Legány,et al.  Cluster validity measurement techniques , 2006 .

[27]  J. Bezdek Cluster Validity with Fuzzy Sets , 1973 .

[28]  Weina Wang,et al.  On fuzzy cluster validity indices , 2007, Fuzzy Sets Syst..

[29]  Jian Yu,et al.  Novel Cluster Validity Index for FCM Algorithm , 2006, Journal of Computer Science and Technology.

[30]  Ujjwal Maulik,et al.  Validity index for crisp and fuzzy clusters , 2004, Pattern Recognit..

[31]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[32]  J. C. Peters,et al.  Fuzzy Cluster Analysis : A New Method to Predict Future Cardiac Events in Patients With Positive Stress Tests , 1998 .

[33]  Thierry Denoeux,et al.  ECM: An evidential version of the fuzzy c , 2008, Pattern Recognit..

[34]  G. Tsekouras,et al.  A new approach for measuring the validity of the fuzzy c -means algorithm , 2004 .

[35]  P. Hespanha,et al.  An Efficient MATLAB Algorithm for Graph Partitioning , 2006 .

[36]  Yi Li,et al.  A cluster validity index for fuzzy clustering , 2008, Inf. Sci..

[37]  Tormod Næs,et al.  New modifications and applications of fuzzy C-means methodology , 2008, Comput. Stat. Data Anal..

[38]  James C. Bezdek,et al.  On cluster validity for the fuzzy c-means model , 1995, IEEE Trans. Fuzzy Syst..

[39]  Francesco Masulli,et al.  A survey of kernel and spectral methods for clustering , 2008, Pattern Recognit..

[40]  Tommy W. S. Chow,et al.  A new shifting grid clustering algorithm , 2004, Pattern Recognit..

[41]  Y. Fukuyama,et al.  A new method of choosing the number of clusters for the fuzzy c-mean method , 1989 .

[42]  J. Bezdek Numerical taxonomy with fuzzy sets , 1974 .

[43]  Noureddine Zahid,et al.  A new cluster-validity for fuzzy clustering , 1999, Pattern Recognit..

[44]  Zengyou He,et al.  A cluster ensemble method for clustering categorical data , 2005, Information Fusion.

[45]  Daoqiang Zhang,et al.  Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation , 2007, Pattern Recognit..

[46]  Zhongfu Wu,et al.  A Novel Clustering Algorithm Based upon a SOFM Neural Network Family , 2005, ISNN.

[47]  Miin-Shen Yang,et al.  Robust cluster validity indexes , 2009, Pattern Recognit..