Anatomical Substrates for Glutamate‐Dopamine Interactions

Abstract: For normal regulation of motor, affective, and cognitive functions, dopamine provides an essential modulation of glutamate transmission within multiple brain regions. This paper will review three principal anatomical substrates for such interactions. First, dopamine modulates the activity of glutamate neurons within the cerebral cortex. Evidence will be reviewed for dopamine regulation of pyramidal neurons in the prefrontal cortex via synaptic and extrasynaptic mechanisms and through indirect effects mediated by GABA cells. Second, glutamate neurons innervate dopamine cells within the ventral tegmental area. Evidence will be described for selective glutamate input from the prefrontal cortex or the brain stem tegmentum to different populations of dopamine cells. The third level of interaction occurs within target regions via convergent synaptic or extrasynaptic regulation of common neurons. Such convergence will be reviewed for the basal ganglia, prefrontal cortex, and amygdala. Together, these substrates for glutamate‐dopamine interactions provide several mechanisms for normal regulation of brain function. Sites of modulatory interaction between dopamine and glutamate also suggest circuit alterations that might contribute to the pathophysiology of mental health disorders and provide potential sites for therapeutic intervention in these conditions.

[1]  H. E. Rosvold,et al.  Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. , 1979, Science.

[2]  L. Swanson,et al.  The projections of the ventral tegmental area and adjacent regions: A combined fluorescent retrograde tracer and immunofluorescence study in the rat , 1982, Brain Research Bulletin.

[3]  R. Roth,et al.  Pharmacology of mesocortical dopamine neurons. , 1983, Pharmacological reviews.

[4]  J. Brown,et al.  The electrophysiology of dopamine (D2) receptors: A study of the actions of dopamine on corticostriatal transmission , 1983, Neuroscience.

[5]  G. Mogenson,et al.  Electrophysiological responses of neurones in the nucleus accumbens to hippocampal stimulation and the attenuation of the excitatory responses by the mesolimbic dopaminergic system , 1984, Brain Research.

[6]  A. Grace,et al.  The control of firing pattern in nigral dopamine neurons: burst firing , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  A. Grace,et al.  The control of firing pattern in nigral dopamine neurons: single spike firing , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  J. Bouyer,et al.  Chemical and structural analysis of the relation between cortical inputs and tyrosine hydroxylase-containing terminals in rat neostriatum , 1984, Brain Research.

[9]  T. F. Freund,et al.  Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines , 1984, Neuroscience.

[10]  G. Mogenson,et al.  Dopamine enhances terminal excitability of hippocampal-accumbens neurons via D2 receptor: role of dopamine in presynaptic inhibition , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  G. Mogenson,et al.  Electrophysiological study of the effects of D1 and D2 dopamine antagonists on the interaction of converging inputs from the sensory-motor cortex and substantia nigra neurons in the rat , 1986, Neuroscience.

[12]  J. Glowinski,et al.  Differential effects of ascending neurons containing dopamine and noradrenaline in the control of spontaneous activity and of evoked responses in the rat prefrontal cortex , 1988, Neuroscience.

[13]  T. Joh,et al.  Gamma‐aminobutyric acid in the medial rat nucleus accumbens: Ultrastructural localization in neurons receiving monosynaptic input from catecholaminergic afferents , 1988, The Journal of comparative neurology.

[14]  Laurent Descarries,et al.  Ultrastructural features of dopamine axon terminals in the anteromedial and the suprarhinal cortex of adult rat , 1988, Brain Research.

[15]  F. Gonon Nonlinear relationship between impulse flow and dopamine released by rat midbrain dopaminergic neurons as studied by in vivo electrochemistry , 1988, Neuroscience.

[16]  R. Roth,et al.  Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: An anterograde tract‐tracing study with Phaseolus vulgaris leucoagglutinin , 1989, The Journal of comparative neurology.

[17]  A. D. Smith,et al.  Convergence of hippocampal and dopaminergic input onto identified neurons in the nucleus accumbens of the rat. , 1989, Journal of chemical neuroanatomy.

[18]  A. Grace,et al.  Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  P. Goldman-Rakic,et al.  Dopamine synaptic complex with pyramidal neurons in primate cerebral cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[20]  S. Sesack,et al.  In the rat medial nucleus accumbens, hippocampal and catecholaminergic terminals converge on spiny neurons and are in apposition to each other , 1990, Brain Research.

[21]  S. Sesack,et al.  Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area , 1992, The Journal of comparative neurology.

[22]  P. Goldman-Rakic,et al.  The synaptology of parvalbumin‐immunoreactive neurons in the primate prefrontal cortex , 1992, The Journal of comparative neurology.

[23]  H. Fibiger,et al.  Afferent connections of the laterodorsal and the pedunculopontine tegmental nuclei in the rat: A retro‐ and antero‐grade transport and immunohistochemical study , 1992, The Journal of comparative neurology.

[24]  C. Cepeda,et al.  Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[25]  H. Fibiger,et al.  Electrical Stimulation of the Medial Prefrontal Cortex Increases Dopamine Release in the Striatum , 1993, Neuropsychopharmacology.

[26]  S. Sesack,et al.  Ultrastructural localization of D2 receptor-like immunoreactivity in midbrain dopamine neurons and their striatal targets , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  A. Parent,et al.  Synaptic relationships between dopaminergic afferents and cortical or thalamic input in the sensorimotor territory of the striatum in monkey , 1994, The Journal of comparative neurology.

[28]  A. Parent,et al.  Pedunculopontine nucleus in the squirrel monkey: Projections to the basal ganglia as revealed by anterograde tract‐tracing methods , 1994, The Journal of comparative neurology.

[29]  A. Grace,et al.  Tonic D2-mediated attenuation of cortical excitation in nucleus accumbens neurons recorded in vitro , 1994, Brain Research.

[30]  A. Janowsky,et al.  Haloperidol-induced morphological changes in striatum are associated with glutamate synapses , 1994, Brain Research.

[31]  P S Goldman-Rakic,et al.  D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex: predominant and extrasynaptic localization in dendritic spines. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[32]  S. Totterdell,et al.  Input from the amygdala to the rat nucleus accumbens: Its relationship with tyrosine hydroxylase immunoreactivity and identified neurons , 1994, Neuroscience.

[33]  Françoise Condé,et al.  Local circuit neurons immunoreactive for calretinin, calbindin D‐28k or parvalbumin in monkey prefronatal cortex: Distribution and morphology , 1994, The Journal of comparative neurology.

[34]  A. Parent,et al.  Pedunculopontine nucleus in the squirrel monkey: Cholinergic and glutamatergic projections to the substantia nigra , 1994, The Journal of comparative neurology.

[35]  D. Lewis Neural circuitry of the prefrontal cortex in schizophrenia. , 1995, Archives of general psychiatry.

[36]  E. Geijo-Barrientos,et al.  The Effects of Dopamine on the Subthreshold Electrophysiological Responses of Rat Prefrontal Cortex Neurons In Vitro , 1995, The European journal of neuroscience.

[37]  E. V. Bockstaele,et al.  GABA-containing neurons in the ventral tegmental area project to the nucleus accumbens in rat brain , 1995, Brain Research.

[38]  C. Holmes,et al.  GABAergic neurons in the rat pontomesencephalic tegmentum: Codistribution with cholinergic and other tegmental neurons projecting to the posterior lateral hypothalamus , 1995, The Journal of comparative neurology.

[39]  B. K. Hartman,et al.  Distribution of pontomesencephalic cholinergic neurons projecting to substantia nigra differs significantly from those projecting to ventral tegmental area , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  S. Sesack,et al.  Ultrastructural associations between dopamine terminals and local circuit neurons in the monkey prefrontal cortex: a study of calretinin-immunoreactive cells , 1995, Neuroscience Letters.

[41]  S. Sesack,et al.  Axon terminals immunolabeled for dopamine or tyrosine hydroxylase synapse on GABA‐immunoreactive dendrites in rat and monkey cortex , 1995, The Journal of comparative neurology.

[42]  F. Mascagni,et al.  Synaptology of prefrontal cortical projections to the basolateral amygdala: an electron microscopic study in the rat , 1995, Neuroscience Letters.

[43]  A. D. Smith,et al.  Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: Light and electron microscopy , 1995, Neuroscience.

[44]  P. Goldman-Rakic,et al.  Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  V. Pickel,et al.  Ultrastructural immunocytochemical localization of the N-methyl-d-aspartate receptor and tyrosine hydroxylase in the shell of the rat nucleus accumbens , 1996, Brain Research.

[46]  D. Surmeier,et al.  S-8-1 State-dependent regulation of neuronal excitability by dopamine , 1996, European Neuropsychopharmacology.

[47]  S. Sesack,et al.  Hippocampal afferents to the rat prefrontal cortex: Synaptic targets and relation to dopamine terminals , 1996, The Journal of comparative neurology.

[48]  P. Dayan,et al.  A framework for mesencephalic dopamine systems based on predictive Hebbian learning , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  G. Rebec,et al.  Dopaminergic modulation of glutamate-induced excitations of neurons in the neostriatum and nucleus accumbens of awake, unrestrained rats. , 1996, Journal of neurophysiology.

[50]  CR Yang,et al.  Dopamine D1 receptor actions in layers V-VI rat prefrontal cortex neurons in vitro: modulation of dendritic-somatic signal integration , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  A. Charara,et al.  Glutamatergic inputs from the pedunculopontine nucleus to midbrain dopaminergic neurons in primates: Phaseolus vulgaris‐leucoagglutinin anterograde labeling combined with postembedding glutamate and GABA immunohistochemistry , 1996, The Journal of comparative neurology.

[52]  F. J. White,et al.  Synaptic regulation of mesocorticolimbic dopamine neurons. , 1996, Annual review of neuroscience.

[53]  B. Bloch,et al.  Ultrastructural localization of D1 dopamine receptor immunoreactivity in rat striatonigral neurons and its relation with dopaminergic innervation , 1996, Brain Research.

[54]  D. Weinberger,et al.  Prefrontal function in schizophrenia: confounds and controversies. , 1996, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[55]  L. Descarries,et al.  Dual character, asynaptic and synaptic, of the dopamine innervation in adult rat neostriatum: A quantitative autoradiographic and immunocytochemical analysis , 1996, The Journal of comparative neurology.

[56]  P. Overton,et al.  Stimulation of the prefrontal cortex in the rat induces patterns of activity in midbrain dopaminergic neurons which resemble natural burst events , 1996, Synapse.

[57]  C. Blaha,et al.  Modulation of dopamine efflux in the nucleus accumbens after cholinergic stimulation of the ventral tegmental area in intact, pedunculopontine tegmental nucleus-lesioned, and laterodorsal tegmental nucleus-lesioned rats , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  J. Bargas,et al.  Dopamine selects glutamatergic inputs to neostriatal neurons , 1997, Synapse.

[59]  P. Kalivas,et al.  Dopamine regulation of extracellular glutamate in the nucleus accumbens , 1997, Brain Research.

[60]  S. Hersch,et al.  Subcellular localization and molecular topology of the dopamine transporter in the striatum and substantia nigra , 1997, The Journal of comparative neurology.

[61]  E. Asan Ultrastructural features of tyrosine-hydroxylase-immunoreactive afferents and their targets in the rat amygdala , 1997, Cell and Tissue Research.

[62]  Patricia S. Goldman-Rakic,et al.  Quantitative Three-Dimensional Analysis of the Catecholaminergic Innervation of Identified Neurons in the Macaque Prefrontal Cortex , 1997, The Journal of Neuroscience.

[63]  A. Malhotra,et al.  Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[64]  P. Calabresi,et al.  Synaptic plasticity and physiological interactions between dopamine and glutamate in the striatum , 1997, Neuroscience & Biobehavioral Reviews.

[65]  K. Fuxe,et al.  Review Article Reciprocaldopamine-glutamatemodulation of release in the basalganglia , 1998, Neurochemistry International.

[66]  W. Schultz Predictive reward signal of dopamine neurons. , 1998, Journal of neurophysiology.

[67]  Allan I. Levey,et al.  Dopamine Axon Varicosities in the Prelimbic Division of the Rat Prefrontal Cortex Exhibit Sparse Immunoreactivity for the Dopamine Transporter , 1998, The Journal of Neuroscience.

[68]  P. Overton,et al.  Do non-dopaminergic neurons in the ventral tegmental area play a role in the responses elicited in A10 dopaminergic neurons by electrical stimulation of the prefrontal cortex? , 1998, Experimental Brain Research.

[69]  S. Sesack,et al.  Callosal terminals in the rat prefrontal cortex: Synaptic targets and association with GABA‐immunoreactive structures , 1998, Synapse.

[70]  F. Gonon,et al.  Internalization of D1 Dopamine Receptor in Striatal NeuronsIn Vivo as Evidence of Activation by Dopamine Agonists , 1998, The Journal of Neuroscience.

[71]  B. Moghaddam,et al.  Glutamatergic Regulation of Basal and Stimulus‐Activated Dopamine Release in the Prefrontal Cortex , 1998, Journal of neurochemistry.

[72]  A. Sampson,et al.  Lamina-specific alterations in the dopamine innervation of the prefrontal cortex in schizophrenic subjects. , 1999, The American journal of psychiatry.

[73]  P. Redgrave,et al.  Is the short-latency dopamine response too short to signal reward error? , 1999, Trends in Neurosciences.

[74]  P. Shepard,et al.  Afferent modulation of dopamine neuron firing patterns , 1999, Current Opinion in Neurobiology.

[75]  P. Overton,et al.  Stimulation of the pedunculopontine tegmental nucleus in the rat produces burst firing in A9 dopaminergic neurons , 1999, Neuroscience.

[76]  V. Pickel,et al.  Cholinergic axon terminals in the ventral tegmental area target a subpopulation of neurons expressing low levels of the dopamine transporter , 1999, The Journal of comparative neurology.

[77]  S. Sesack,et al.  Dopamine Terminals in the Rat Prefrontal Cortex Synapse on Pyramidal Cells that Project to the Nucleus Accumbens , 1999, The Journal of Neuroscience.

[78]  D. Henze,et al.  Dopamine increases excitability of pyramidal neurons in primate prefrontal cortex. , 2000, Journal of neurophysiology.

[79]  C. Blaha,et al.  Laterodorsal tegmental stimulation elicits dopamine efflux in the rat nucleus accumbens by activation of acetylcholine and glutamate receptors in the ventral tegmental area , 2000, The European journal of neuroscience.

[80]  S. Sesack,et al.  Dopamine terminals synapse on callosal projection neurons in the rat prefrontal cortex , 2000, The Journal of comparative neurology.

[81]  J. Wickens,et al.  Dopamine and synaptic plasticity in the neostriatum , 2000, Journal of anatomy.

[82]  P. Goldman-Rakic,et al.  D1 receptors in prefrontal cells and circuits , 2000, Brain Research Reviews.

[83]  D. Zenisek,et al.  Transport, capture and exocytosis of single synaptic vesicles at active zones , 2000, Nature.

[84]  S. Sesack,et al.  Dopamine innervation of monkey entorhinal cortex: Postsynaptic targets of tyrosine hydroxylase‐immunoreactive terminals , 2000, Synapse.

[85]  Marc Laruelle,et al.  The role of endogenous sensitization in the pathophysiology of schizophrenia: Implications from recent brain imaging studies , 2000, Brain Research Reviews.

[86]  A. Carlsson,et al.  Network interactions in schizophrenia — therapeutic implications , 2000, Brain Research Reviews.

[87]  S. Sesack,et al.  Projections from the Rat Prefrontal Cortex to the Ventral Tegmental Area: Target Specificity in the Synaptic Associations with Mesoaccumbens and Mesocortical Neurons , 2000, The Journal of Neuroscience.

[88]  S. Sesack,et al.  GABA‐containing neurons in the rat ventral tegmental area project to the prefrontal cortex , 2000, Synapse.

[89]  T. Tzschentke Pharmacology and behavioral pharmacology of the mesocortical dopamine system , 2001, Progress in Neurobiology.

[90]  M. Jackson,et al.  Stimulation of prefrontal cortex at physiologically relevant frequencies inhibits dopamine release in the nucleus accumbens , 2001, Journal of neurochemistry.

[91]  A. Phillips,et al.  Glutamate Receptor-Dependent Modulation of Dopamine Efflux in the Nucleus Accumbens by Basolateral, But Not Central, Nucleus of the Amygdala in Rats , 2002, The Journal of Neuroscience.

[92]  Anthony A Grace,et al.  Opposite Influences of Endogenous Dopamine D1 and D2 Receptor Activation on Activity States and Electrophysiological Properties of Striatal Neurons: Studies CombiningIn Vivo Intracellular Recordings and Reverse Microdialysis , 2002, The Journal of Neuroscience.

[93]  S. Sesack,et al.  Selective prefrontal cortex inputs to dopamine cells: implications for schizophrenia , 2002, Physiology & Behavior.

[94]  Anthony A Grace,et al.  Cellular Mechanisms of Infralimbic and Prelimbic Prefrontal Cortical Inhibition and Dopaminergic Modulation of Basolateral Amygdala Neurons In Vivo , 2002, The Journal of Neuroscience.

[95]  Hong Wang,et al.  Dopamine D2 receptors are present in prefrontal cortical afferents and their targets in patches of the rat caudate‐putamen nucleus , 2002, The Journal of comparative neurology.

[96]  S. Sesack Synaptology of Dopamine Neurons , 2002 .

[97]  S. Sesack,et al.  Projections from the paraventricular nucleus of the thalamus to the rat prefrontal cortex and nucleus accumbens shell: Ultrastructural characteristics and spatial relationships with dopamine afferents , 2003, The Journal of comparative neurology.