A 3D approach to reconstruct continuous optical images using lidar and MODIS

[1]  Brian W. Barrett,et al.  Temporal optimisation of image acquisition for land cover classification with Random Forest and MODIS time-series , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[2]  刘清旺,et al.  A Study on Typical Forest Biomass Mapping Technology of Great Khingan Using Airborne Laser Scanner Data , 2015 .

[3]  Zhihao Qin,et al.  Drought Change Trend Using MODIS TVDI and Its Relationship with Climate Factors in China from 2001 to 2010 , 2014 .

[4]  Raul Rivas,et al.  Subsurface Soil Moisture Estimation by VI–LST Method , 2014, IEEE Geoscience and Remote Sensing Letters.

[5]  Rasmus Houborg,et al.  Retrieving Leaf Area Index From Landsat Using MODIS LAI Products and Field Measurements , 2014, IEEE Geoscience and Remote Sensing Letters.

[6]  Benoit Rivard,et al.  Quantifying tropical dry forest succession in the Americas using CHRIS/PROBA , 2014 .

[7]  Chen Jingbo,et al.  Chlorophyll content retrieve of vegetation using Hyperion data based on empirical models , 2014 .

[8]  Feng Mingb Chlorophyll content retrieve of vegetation using Hyperion data based on empirical models , 2014 .

[9]  Zeng-yuan Li,et al.  [The changes of forest canopy spectral reflectance with seasons in Xiaoxing'anling]. , 2013, Guang pu xue yu guang pu fen xi = Guang pu.

[10]  Holly Croft,et al.  Modelling leaf chlorophyll content in broadleaf and needle leaf canopies from ground, CASI, Landsat TM 5 and MERIS reflectance data , 2013 .

[11]  Am Mudabeti,et al.  Remote sensing 1 , 2013 .

[12]  Wenhan Qin,et al.  RAPID: A Radiosity Applicable to Porous IndiviDual Objects for directional reflectance over complex vegetated scenes , 2013 .

[13]  Koji Kajiwara,et al.  Estimation of forest canopy structural parameters using kernel-driven bi-directional reflectance model based multi-angular vegetation indices , 2013 .

[14]  R. Nelson,et al.  Achieving accuracy requirements for forest biomass mapping: A spaceborne data fusion method for estimating forest biomass and LiDAR sampling error , 2013 .

[15]  Xiaowen Li,et al.  Analysis of BRDF and Albedo Retrieved by Kernel-Driven Models Using Field Measurements , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[16]  Jin Guangze Estimation of leaf area index of secondary Betula platyphylla forest in Xiaoxing′an Mountains , 2013 .

[17]  J. R. Rosell-Polo,et al.  Leaf area index estimation in vineyards using a ground-based LiDAR scanner , 2013, Precision Agriculture.

[18]  Joanne C. White,et al.  Lidar calibration and validation for geometric-optical modeling with Landsat imagery , 2012 .

[19]  S. Liang,et al.  Validation of MODIS and CYCLOPES LAI products using global field measurement data , 2012 .

[20]  Juha Hyyppä,et al.  An International Comparison of Individual Tree Detection and Extraction Using Airborne Laser Scanning , 2012, Remote. Sens..

[21]  Zheng Niu,et al.  A model for spatial and temporal data fusion: A model for spatial and temporal data fusion , 2012 .

[22]  Thomas Adams,et al.  Extracting More Data from LiDAR in Forested Areas by Analyzing Waveform Shape , 2012, Remote. Sens..

[23]  Miina Rautiainen,et al.  Retrieval of seasonal dynamics of forest understory reflectance in a Northern European boreal forest from MODIS BRDF data , 2012 .

[24]  Wang Jie,et al.  A model for spatial and temporal data fusion , 2012 .

[25]  Miina Rautiainen,et al.  Seasonal reflectance dynamics of common understory types in a northern European boreal forest , 2011 .

[26]  Gérard Dedieu,et al.  A framework for the simulation of high temporal resolution image series , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[27]  Nicolas Barbier,et al.  Bidirectional texture function of high resolution optical images of tropical forest: An approach using LiDAR hillshade simulations , 2011 .

[28]  A. Stein,et al.  The chlorophyll variability in Meteosat derived NDVI in a context of drought monitoring , 2011 .

[29]  A. Viña,et al.  Mapping understory vegetation using phenological characteristics derived from remotely sensed data , 2010 .

[30]  John R. Miller,et al.  Mapping Forest Background Reflectance in a Boreal Region Using Multiangle Compact Airborne Spectrographic Imager Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[31]  Jing M. Chen,et al.  Mapping forest background reflectivity over North America with Multi-angle Imaging SpectroRadiometer (MISR) data , 2009 .

[32]  Wenjie Fan,et al.  Scale transformation of Leaf Area Index product retrieved from multiresolution remotely sensed data: analysis and case studies , 2009 .

[33]  W. Verhoef,et al.  PROSPECT+SAIL models: A review of use for vegetation characterization , 2009 .

[34]  Joanne C. White,et al.  Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model. , 2009 .

[35]  Karen M. Barry,et al.  Estimation of chlorophyll content in Eucalyptus globulus foliage with the leaf reflectance model PROSPECT , 2009 .

[36]  Zhu Jiao-jun,et al.  Monthly changes of leaf area index and canopy openness of Larix olgensis in mountainous regions in east Liaoning Province. , 2009 .

[37]  Chaoyang Wu,et al.  Estimating chlorophyll content from hyperspectral vegetation indices : Modeling and validation , 2008 .

[38]  W. Cohen,et al.  North American forest disturbance mapped from a decadal Landsat record , 2008 .

[39]  J. Brasington,et al.  Retrieval of vegetative fluid resistance terms for rigid stems using airborne lidar. , 2008 .

[40]  M. Rautiainen,et al.  Multi-angular reflectance properties of a hemiboreal forest: An analysis using CHRIS PROBA data , 2008 .

[41]  J. Chen,et al.  Retrieving forest background reflectance in a boreal region from Multi-angle Imaging SpectroRadiometer (MISR) data , 2007 .

[42]  Hideki Kobayashi,et al.  Reflectance seasonality and its relation to the canopy leaf area index in an eastern Siberian larch forest : Multi-satellite data and radiative transfer analyses , 2007 .

[43]  Richard M. Lucas,et al.  Enhanced Simulation of Radar Backscatter From Forests Using LiDAR and Optical Data , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[44]  Ranga B. Myneni,et al.  Monitoring spring canopy phenology of a deciduous broadleaf forest using MODIS , 2006 .

[45]  Mathew R. Schwaller,et al.  On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[46]  R. Ceulemans,et al.  Variation of specific leaf area and upscaling to leaf area index in mature Scots pine , 2006, Trees.

[47]  N. Delbart,et al.  Determination of phenological dates in boreal regions using normalized difference water index , 2005 .

[48]  Per Jönsson,et al.  TIMESAT - a program for analyzing time-series of satellite sensor data , 2004, Comput. Geosci..

[49]  S. Popescu,et al.  Seeing the Trees in the Forest: Using Lidar and Multispectral Data Fusion with Local Filtering and Variable Window Size for Estimating Tree Height , 2004 .

[50]  David M. Johnson,et al.  Impacts of imagery temporal frequency on land-cover change detection monitoring , 2004 .

[51]  S. Ustin,et al.  Predicting water content using Gaussian model on soil spectra , 2004 .

[52]  F. Baret,et al.  Relating soil surface moisture to reflectance , 2002 .

[53]  I. Sandholt,et al.  A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status , 2002 .

[54]  E. Muller,et al.  Modeling soil moisture-reflectance , 2001 .

[55]  A. Strahler,et al.  On the derivation of kernels for kernel‐driven models of bidirectional reflectance , 1995 .

[56]  Crystal B. Schaaf,et al.  Validation of bidirectional and hemispherical reflectances from a geometric-optical model using ASAS imagery and pyranometer measurements of a spruce forest , 1994 .