pBrain: A novel pipeline for Parkinson related brain structure segmentation

Highlights • A novel pipeline for Parkinson`s disease structure segmentation is presented.• State-of-the-art fast multiatlas patch-based label fusion with systematic error correction is used to accurately and efficiently produce very competitive results in around 5 min.• The proposed pipeline works at high resolution (0.5 mm) but it can work also with standard resolution (1 mm) T2 images allowing the analysis of large legacy databases.• The proposed pipeline will be made publically available online through our volBrain platform.

[1]  K. Seppi,et al.  Magnetic resonance imaging for the diagnosis of Parkinson’s disease , 2017, Journal of Neural Transmission.

[2]  Nicolas Guizard,et al.  Investigation of morphometric variability of subthalamic nucleus, red nucleus, and substantia nigra in advanced Parkinson's disease patients using automatic segmentation and PCA‐based analysis , 2014, Human brain mapping.

[3]  Keyoumars Ashkan,et al.  Optimal MRI methods for direct stereotactic targeting of the subthalamic nucleus and globus pallidus , 2010, European Radiology.

[4]  D. Louis Collins,et al.  An Optimized PatchMatch for multi-scale and multi-feature label fusion , 2016, NeuroImage.

[5]  A. Parent,et al.  Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidium in basal ganglia circuitry , 1995, Brain Research Reviews.

[6]  Brian B. Avants,et al.  Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain , 2008, Medical Image Anal..

[7]  Guido Gerig,et al.  User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability , 2006, NeuroImage.

[8]  S. K. Franke,et al.  Involvement of the Red Nucleus in the Compensation of Parkinsonism may Explain why Primates can develop Stable Parkinson’s Disease , 2019, Scientific Reports.

[9]  Pierrick Coupé,et al.  Author manuscript, published in "Journal of Magnetic Resonance Imaging 2010;31(1):192-203" DOI: 10.1002/jmri.22003 Adaptive Non-Local Means Denoising of MR Images with Spatially Varying Noise Levels , 2010 .

[10]  Brian B. Avants,et al.  N4ITK: Improved N3 Bias Correction , 2010, IEEE Transactions on Medical Imaging.

[11]  M. Mallar Chakravarty,et al.  A novel in vivo atlas of human hippocampal subfields using high-resolution 3T magnetic resonance imaging , 2013, NeuroImage.

[12]  L G Nyúl,et al.  On standardizing the MR image intensity scale , 1999, Magnetic resonance in medicine.

[13]  T. Aird Functional Anatomy of the Basal Ganglia , 2000, The Journal of neuroscience nursing : journal of the American Association of Neuroscience Nurses.

[14]  Benoit M. Dawant,et al.  Morphometric analysis of white matter lesions in MR images: method and validation , 1994, IEEE Trans. Medical Imaging.

[15]  M. C. Rodríguez-Oroz,et al.  Revisión crítica de la estimulación subtalámica en la enfermedad de Parkinson , 2009 .

[16]  Suzanne Corkin,et al.  Substantia nigra volume loss before basal forebrain degeneration in early Parkinson disease. , 2013, JAMA neurology.

[17]  Abbas F. Sadikot,et al.  Patch-based label fusion segmentation of brainstem structures with dual-contrast MRI for Parkinson’s disease , 2015, International Journal of Computer Assisted Radiology and Surgery.

[18]  Maxime Descoteaux,et al.  Collaborative patch-based super-resolution for diffusion-weighted images , 2013, NeuroImage.

[19]  J. Yelnik Functional anatomy of the basal ganglia , 2002, Movement disorders : official journal of the Movement Disorder Society.

[20]  C. Jack,et al.  Alzheimer's Disease Neuroimaging Initiative , 2008 .

[21]  D. Louis Collins,et al.  Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation , 2011, NeuroImage.

[22]  Konstantin V Slavin,et al.  Subthalamic and red nucleus volumes in patients with Parkinson's disease: do they change with disease progression? , 2010, Parkinsonism & related disorders.

[23]  Mark Jenkinson,et al.  Automated segmentation of the substantia nigra, subthalamic nucleus and red nucleus in 7 T data at young and old age , 2016, NeuroImage.

[24]  D. Louis Collins,et al.  Non-local MRI upsampling , 2010, Medical Image Anal..

[25]  D. Louis Collins,et al.  Automated segmentation of basal ganglia and deep brain structures in MRI of Parkinson’s disease , 2012, International Journal of Computer Assisted Radiology and Surgery.

[26]  D. Collins,et al.  The creation of a brain atlas for image guided neurosurgery using serial histological data , 2003, NeuroImage.

[27]  Pierrick Coupé,et al.  HIPS: A new hippocampus subfield segmentation method , 2017, NeuroImage.

[28]  Raul Martínez‐Fernández,et al.  ACTUALIZACIÓN EN LA ENFERMEDAD DE PARKINSON , 2016 .

[29]  M. Mallar Chakravarty,et al.  Atlas-Based Segmentation of the Subthalamic Nucleus, Red Nucleus, and Substantia Nigra for Deep Brain Stimulation by Incorporating Multiple MRI Contrasts , 2012, IPCAI.

[30]  D. Louis Collins,et al.  Automatic 3‐D model‐based neuroanatomical segmentation , 1995 .

[31]  Paul A. Yushkevich,et al.  Multi-Atlas Segmentation with Joint Label Fusion , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Houeto Jean-Luc [Parkinson's disease]. , 2022, La Revue du praticien.