Metamaterial microwave holographic imaging system.

We demonstrate a microwave imaging system that combines advances in metamaterial aperture design with emerging computational imaging techniques. The flexibility inherent to guided-wave, complementary metamaterials enables the design of a planar antenna that illuminates a scene with dramatically varying radiation patterns as a function of frequency. As frequency is swept over the K-band (17.5-26.5 GHz), a sequence of pseudorandom radiation patterns interrogates a scene. Measurements of the return signal versus frequency are then acquired and the scene is reconstructed using computational imaging methods. The low-cost, frequency-diverse static aperture allows three-dimensional images to be formed without mechanical scanning or dynamic beam-forming elements. The metamaterial aperture is complementary to a variety of computational imaging schemes, and can be used in conjunction with other sensors to form a multifunctional imaging platform. We illustrate the potential of multisensor fusion by integrating an infrared structured-light and optical image sensor to accelerate the microwave scene reconstruction and to provide a simultaneous visualization of the scene.

[1]  David R. Smith,et al.  Metamaterial apertures for coherent computational imaging on the physical layer. , 2013, Journal of the Optical Society of America. A, Optics, image science, and vision.

[2]  J. Bonache,et al.  Babinet principle applied to the design of metasurfaces and metamaterials. , 2004, Physical review letters.

[3]  L. Yujiri,et al.  Passive Millimeter Wave Imaging , 2003, 2006 IEEE MTT-S International Microwave Symposium Digest.

[4]  R.G. Baraniuk,et al.  Compressive Sensing [Lecture Notes] , 2007, IEEE Signal Processing Magazine.

[5]  Richard G. Baraniuk,et al.  Terahertz imaging with compressed sensing and phase retrieval , 2008 .

[6]  G. Tricoles,et al.  Microwave holography: Applications and techniques , 1977, Proceedings of the IEEE.

[7]  J. Romberg,et al.  Imaging via Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[8]  Joseph N Mait,et al.  Millimeter-wave compressive holography. , 2010, Applied optics.

[9]  I. Hajnsek,et al.  A tutorial on synthetic aperture radar , 2013, IEEE Geoscience and Remote Sensing Magazine.

[10]  David R. Smith,et al.  Electric-field-coupled resonators for negative permittivity metamaterials , 2006 .

[11]  Duncan A. Robertson,et al.  Compact real-time (video rate) passive millimeter-wave imager , 1999, Defense, Security, and Sensing.

[12]  Thomas E. Hall,et al.  Three-dimensional millimeter-wave imaging for concealed weapon detection , 2001 .

[13]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[14]  Nabil H. Farhat,et al.  Millimeter wave holographic imaging of concealed weapons , 1971 .

[15]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[16]  D. Gabor A New Microscopic Principle , 1948, Nature.

[17]  David R. Smith,et al.  Homogenization analysis of complementary waveguide metamaterials , 2013 .

[18]  D. M. Pozar,et al.  Analysis of an infinite phased array of aperture coupled microstrip patches , 1989 .

[19]  David R. Smith,et al.  Metamaterial Apertures for Computational Imaging , 2013, Science.

[20]  J. P. Ruina,et al.  Some Early Developments in Synthetic Aperture Radar Systems , 1962, IRE Transactions on Military Electronics.

[21]  R. M. Willett,et al.  Compressed sensing for practical optical imaging systems: A tutorial , 2011, IEEE Photonics Conference 2012.

[22]  José M. Bioucas-Dias,et al.  A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration , 2007, IEEE Transactions on Image Processing.

[23]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[24]  Mehrdad Soumekh Bistatic synthetic aperture radar inversion with application in dynamic object imaging , 1991, IEEE Trans. Signal Process..

[25]  R. N. Anderton,et al.  Millimeter-Wave and Submillimeter-Wave Imaging for Security and Surveillance , 2007, Proceedings of the IEEE.

[26]  Wai Lam Chan,et al.  A single-pixel terahertz imaging system based on compressed sensing , 2008 .

[27]  Daniel L Marks,et al.  Compressive holography of diffuse objects. , 2010, Applied optics.

[28]  M A Neifeld,et al.  Information, resolution, and space-bandwidth product. , 1998, Optics letters.