The Spatial Complexity of Localized Buckling in Rods with Noncircular Cross Section

We study the postbuckling behavior of long, thin elastic rods subject to end moment and tension. This problem in statics has the well-known Kirchhoff dynamic analogy in rigid body mechanics consisting of a reversible three-degrees-of-freedom Hamiltonian system. For rods with noncircular cross section, this dynamical system is in general nonintegrable and in dimensionless form depends on two parameters: a unified load parameter and a geometric parameter measuring the anisotropy of the cross section.Previous work has given strong evidence of the existence of a countable infinity of localized buckling modes which in the dynamic analogy correspond to N-pulse homoclinic orbits to the trivial solution representing the straight rod. This paper presents a systematic numerical study of a large sample of these buckling modes. The solutions are found by applying a recently developed shooting method which exploits the reversibility of the system. Subsequent continuation of the homoclinic orbits as parameters are vari...

[1]  Björn Sandstede,et al.  A numerical toolbox for homoclinic bifurcation analysis , 1996 .

[2]  Wolf-Jürgen Beyn,et al.  The Numerical Computation of Connecting Orbits in Dynamical Systems , 1990 .

[3]  S. Antman Nonlinear problems of elasticity , 1994 .

[4]  Yu. A. Kuznetsov Computation of Invariant Manifold Bifurcations , 1990 .

[5]  G. Iooss,et al.  Perturbed Homoclinic Solutions in Reversible 1:1 Resonance Vector Fields , 1993 .

[6]  Alan R. Champneys,et al.  A global investigation of solitary-wave solutions to a two-parameter model for water waves , 1997, Journal of Fluid Mechanics.

[7]  A. Champneys,et al.  Spatially complex localization after one-twist-per-wave equilibria in twisted circular rods with initial curvature , 1997, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[8]  J. M. T. Thompson,et al.  Lock-on to tape-like behaviour in the torsional buckling of anisotropic rods , 1998 .

[9]  Alan R. Champneys,et al.  Bifurcation and coalescence of a plethora of homoclinic orbits for a Hamiltonian system , 1996 .

[10]  Alan R. Champneys,et al.  Hunting for homoclinic orbits in reversible systems: A shooting technique , 1993, Adv. Comput. Math..

[11]  H. B. Keller,et al.  NUMERICAL ANALYSIS AND CONTROL OF BIFURCATION PROBLEMS (II): BIFURCATION IN INFINITE DIMENSIONS , 1991 .

[12]  Robert L. Devaney,et al.  Homoclinic orbits in Hamiltonian systems , 1976 .

[13]  Giles W Hunt,et al.  Comparative lagrangian formulations for localized buckling , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[14]  Jj Org,et al.  Cascades of Reversible Homoclinic Orbits to a Saddle-focus Equilibrium , 1997 .

[15]  Klaus Kirchgässner,et al.  Water waves for small surface tension: an approach via normal form , 1992, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[16]  Alan R. Champneys,et al.  Bifurcation of a plethora of multi-modal homoclinic orbits for autonomous Hamiltonian systems , 1993 .

[17]  G. Iooss,et al.  A codimension 2 Bifurcation for reversible Vector Fields , 1995 .

[18]  A. R. Champneys,et al.  A multiplicity of localized buckling modes for twisted rod equations , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[19]  Alan R. Champneys,et al.  From helix to localized writhing in the torsional post-buckling of elastic rods , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[20]  G. W. Hunt,et al.  Structural localization phenomena and the dynamical phase-space analogy , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[21]  Alan R. Champneys,et al.  Subsidiary homoclinic orbits to a saddle focus for reversible systems , 1994 .

[22]  Philip Holmes,et al.  Spatially complex equilibria of buckled rods , 1988 .

[23]  G. M.,et al.  A Treatise on the Mathematical Theory of Elasticity , 1906, Nature.