The Spatial Complexity of Localized Buckling in Rods with Noncircular Cross Section
暂无分享,去创建一个
Alan R. Champneys | J. Michael T. Thompson | G. H. M. van der Heijden | A. Champneys | J. Thompson | G. V. D. Heijden
[1] Björn Sandstede,et al. A numerical toolbox for homoclinic bifurcation analysis , 1996 .
[2] Wolf-Jürgen Beyn,et al. The Numerical Computation of Connecting Orbits in Dynamical Systems , 1990 .
[3] S. Antman. Nonlinear problems of elasticity , 1994 .
[4] Yu. A. Kuznetsov. Computation of Invariant Manifold Bifurcations , 1990 .
[5] G. Iooss,et al. Perturbed Homoclinic Solutions in Reversible 1:1 Resonance Vector Fields , 1993 .
[6] Alan R. Champneys,et al. A global investigation of solitary-wave solutions to a two-parameter model for water waves , 1997, Journal of Fluid Mechanics.
[7] A. Champneys,et al. Spatially complex localization after one-twist-per-wave equilibria in twisted circular rods with initial curvature , 1997, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[8] J. M. T. Thompson,et al. Lock-on to tape-like behaviour in the torsional buckling of anisotropic rods , 1998 .
[9] Alan R. Champneys,et al. Bifurcation and coalescence of a plethora of homoclinic orbits for a Hamiltonian system , 1996 .
[10] Alan R. Champneys,et al. Hunting for homoclinic orbits in reversible systems: A shooting technique , 1993, Adv. Comput. Math..
[11] H. B. Keller,et al. NUMERICAL ANALYSIS AND CONTROL OF BIFURCATION PROBLEMS (II): BIFURCATION IN INFINITE DIMENSIONS , 1991 .
[12] Robert L. Devaney,et al. Homoclinic orbits in Hamiltonian systems , 1976 .
[13] Giles W Hunt,et al. Comparative lagrangian formulations for localized buckling , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[14] Jj Org,et al. Cascades of Reversible Homoclinic Orbits to a Saddle-focus Equilibrium , 1997 .
[15] Klaus Kirchgässner,et al. Water waves for small surface tension: an approach via normal form , 1992, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[16] Alan R. Champneys,et al. Bifurcation of a plethora of multi-modal homoclinic orbits for autonomous Hamiltonian systems , 1993 .
[17] G. Iooss,et al. A codimension 2 Bifurcation for reversible Vector Fields , 1995 .
[18] A. R. Champneys,et al. A multiplicity of localized buckling modes for twisted rod equations , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[19] Alan R. Champneys,et al. From helix to localized writhing in the torsional post-buckling of elastic rods , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[20] G. W. Hunt,et al. Structural localization phenomena and the dynamical phase-space analogy , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[21] Alan R. Champneys,et al. Subsidiary homoclinic orbits to a saddle focus for reversible systems , 1994 .
[22] Philip Holmes,et al. Spatially complex equilibria of buckled rods , 1988 .
[23] G. M.,et al. A Treatise on the Mathematical Theory of Elasticity , 1906, Nature.