DNA origami as a nanoscale template for protein assembly

We describe two general approaches to the utilization of DNA origami structures for the assembly of materials. In one approach, DNA origami is used as a prefabricated template for subsequent assembly of materials. In the other, materials are assembled simultaneously with the DNA origami, i.e. the DNA origami technique is used to drive the assembly of materials. Fabrication of complex protein structures is demonstrated by these two approaches. The latter approach has the potential to be extended to the assembly of multiple materials with single attachment chemistry.

[1]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[2]  Paul W K Rothemund,et al.  Sturdier DNA nanotubes via ligation. , 2006, Nano letters.

[3]  Hao Yan,et al.  Self-Assembled Water-Soluble Nucleic Acid Probe Tiles for Label-Free RNA Hybridization Assays , 2008, Science.

[4]  J. Reif,et al.  Finite-size, fully addressable DNA tile lattices formed by hierarchical assembly procedures. , 2006, Angewandte Chemie.

[5]  Itamar Willner,et al.  Enzyme cascades activated on topologically programmed DNA scaffolds. , 2009, Nature nanotechnology.

[6]  C. Dwyer,et al.  Scalable, low-cost, hierarchical assembly of programmable DNA nanostructures , 2007 .

[7]  James W. Wollack,et al.  A universal method for the preparation of covalent protein-DNA conjugates for use in creating protein nanostructures. , 2007, Angewandte Chemie.

[8]  K. Christman,et al.  Nanopatterning proteins and peptides. , 2006, Soft matter.

[9]  J. Reif,et al.  DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires , 2003, Science.

[10]  A. Turberfield,et al.  Engineering a 2D protein-DNA crystal. , 2005, Angewandte Chemie.

[11]  E. Yashima,et al.  Conductive metal nanowires templated by the nucleoprotein filaments, complex of DNA and RecA protein. , 2005, Journal of the American Chemical Society.

[12]  G. Fidelio,et al.  Extremely high thermal stability of streptavidin and avidin upon biotin binding. , 1999, Biomolecular engineering.

[13]  Joakim Lundeberg,et al.  The biotin‐streptavidin interaction can be reversibly broken using water at elevated temperatures , 2005, Electrophoresis.

[14]  Hao Yan,et al.  Toward reliable gold nanoparticle patterning on self-assembled DNA nanoscaffold. , 2008, Journal of the American Chemical Society.

[15]  M. Wilchek,et al.  The avidin-biotin complex in bioanalytical applications. , 1988, Analytical biochemistry.

[16]  Charles M. Lieber,et al.  Nanoelectronics from the bottom up. , 2007, Nature materials.

[17]  E. Braun,et al.  DNA-Templated Carbon Nanotube Field-Effect Transistor , 2003, Science.

[18]  F. Simmel,et al.  Isothermal assembly of DNA origami structures using denaturing agents. , 2008, Journal of the American Chemical Society.

[19]  J. Sturm,et al.  On-chip natural assembly of silicon photonic bandgap crystals , 2001, Nature.

[20]  Albert Polman,et al.  Plasmon-based nanolenses assembled on a well-defined DNA template. , 2008, Journal of the American Chemical Society.

[21]  Thomas H. LaBean,et al.  Constructing novel materials with DNA , 2007 .

[22]  N. Seeman DNA in a material world , 2003, Nature.

[23]  Bernard Yurke,et al.  Dielectrophoretic trapping of DNA origami. , 2008, Small.

[24]  Hao Yan,et al.  Spatially addressable multiprotein nanoarrays templated by aptamer-tagged DNA nanoarchitectures. , 2007, Journal of the American Chemical Society.

[25]  D. Côte,et al.  DNA-carbon nanotube conjugates prepared by a versatile method using streptavidin-biotin recognition. , 2008, Small.