Can assimilation of crowdsourced streamflow observations in hydrological modelling improve flood prediction

Introduction Conclusions References

[1]  M. Hartnett,et al.  An optimal interpolation scheme for assimilation of HF radar current data into a numerical ocean model , 2012, 2012 Oceans.

[2]  Xianhong Xie,et al.  Data assimilation for distributed hydrological catchment modeling via ensemble Kalman filter , 2010 .

[3]  Philippe Courtier,et al.  Unified Notation for Data Assimilation : Operational, Sequential and Variational , 1997 .

[4]  W. Cao,et al.  Multi‐variable and multi‐site calibration and validation of SWAT in a large mountainous catchment with high spatial variability , 2006 .

[5]  James L. Kinter,et al.  Ocean data assimilation using intermittent analyses and continuous model error correction , 2002 .

[6]  G. Matheron Principles of geostatistics , 1963 .

[7]  Soroosh Sorooshian,et al.  Dual state-parameter estimation of hydrological models using ensemble Kalman filter , 2005 .

[8]  R. Moore,et al.  Accuracy of rainfall measurement for scales of hydrological interest , 2000 .

[9]  Dennis McLaughlin,et al.  An integrated approach to hydrologic data assimilation: interpolation, smoothing, and filtering , 2002 .

[10]  V. Isham,et al.  Design of the HYREX raingauge network , 2000 .

[11]  Arnold W. Heemink,et al.  Application of advanced data assimilation methods for the initialisation of storm surge models , 1998 .

[12]  Leonardo Alfonso,et al.  Coupling hydrodynamic models and value of information for designing stage monitoring networks , 2012 .

[13]  Michael N. Fienen,et al.  Social.Water - A crowdsourcing tool for environmental data acquisition , 2012, Comput. Geosci..

[14]  Seong Jin Noh,et al.  Advancing data assimilation in operational hydrologic forecasting: progresses, challenges, and emerging opportunities , 2012 .

[15]  Christian Hergarten,et al.  Citizen science in hydrology and water resources: opportunities for knowledge generation, ecosystem service management, and sustainable development , 2014, Front. Earth Sci..

[16]  Leonardo Alfonso,et al.  Assimilating uncertain, dynamic and intermittent streamflow observations in hydrological models , 2015 .

[17]  B. Macpherson,et al.  Dynamic initialization by repeated insertion of data , 1991 .

[18]  John Derber,et al.  A Global Oceanic Data Assimilation System , 1989 .

[19]  Christopher S Lowry,et al.  CrowdHydrology: Crowdsourcing Hydrologic Data and Engaging Citizen Scientists , 2013, Ground water.

[20]  J. McDonnell,et al.  Debates—The future of hydrological sciences: A (common) path forward? A call to action aimed at understanding velocities, celerities and residence time distributions of the headwater hydrograph , 2014 .

[21]  Ezio Todini,et al.  A mass conservative and water storage consistent variable parameter Muskingum-Cunge approach , 2007 .

[22]  M. Abbott,et al.  On The Numerical Computation Of Nearly Horizontal Flows , 1967 .

[23]  Jens Christian Refsgaard,et al.  Validation and Intercomparison of Different Updating Procedures for Real-Time Forecasting , 1997 .

[24]  Angela Lundberg,et al.  Combination of a Conceptual Model and an Autoregressive Error Model for Improving Short Time Forecasting , 1982 .

[25]  Tracy Depue,et al.  The Community Collaborative Rain, Hail, and Snow Network Informal Education for Scientists and Citizens , 2005 .

[26]  E. Kalnay,et al.  Four-dimensional ensemble Kalman filtering , 2004 .

[27]  D. Solomatine,et al.  Influence of spatial distribution of sensors and observation accuracy on the assimilation of distributed streamflow data in hydrological modelling , 2016 .

[28]  Michael Zink,et al.  iSPUW: A Vision for Integrated Sensing and Prediction of Urban Water for Sustainable Cities , 2014, DyDESS.

[29]  Oldrich Rakovec,et al.  Operational aspects of asynchronous filtering for flood forecasting , 2015 .

[30]  Raúl E. Martínez,et al.  Methodology for public monitoring of total coliforms, Escherichia coli and toxicity in waterways by Canadian high school students , 2000 .

[31]  S. Bergström OPERATIONAL HYDROLOGICAL FORECASTING BY CONCEPTUAL MODELS IN SWEDEN , 1981 .

[32]  Pablo A. Mendoza,et al.  Uncertainty in flood forecasting: A distributed modeling approach in a sparse data catchment , 2012 .

[33]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1972 .

[34]  D. Aubert,et al.  Sequential assimilation of soil moisture and streamflow data in a conceptual rainfall-runoff model , 2003 .

[35]  K. Eckhardt How to construct recursive digital filters for baseflow separation , 2005 .

[36]  H. Lee,et al.  Variational assimilation of streamflow into operational distributed hydrologic models: effect of spatiotemporal scale of adjustment , 2012 .

[37]  Luca Ridolfi,et al.  Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress: II. Probabilistic soil moisture dynamics , 2001 .

[38]  Wouter Buytaert,et al.  Understanding the hydrology of tropical Andean ecosystems through an Andean network of basins , 2009 .

[39]  N. Verhoest,et al.  Correcting for forecast bias in soil moisture assimilation with the ensemble Kalman filter , 2007 .

[40]  Wanchang Zhang,et al.  Assimilating multi-site measurements for semi-distributed hydrological model updating , 2012 .

[41]  Ronald M. Errico,et al.  An estimate of some analysis‐error statistics using the Global Modeling and Assimilation Office observing‐system simulation framework , 2014 .

[42]  Olivier Pannekoucke,et al.  On the Merits of Using a 3D-FGAT Assimilation Scheme with an Outer Loop for Atmospheric Situations Governed by Transport , 2010 .

[43]  J. Reese Voshell,et al.  Volunteer Biological Monitoring: Can It Accurately Assess the Ecological Condition of Streams? , 2002 .

[44]  R. Ibbitt,et al.  Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model , 2007 .

[45]  Oldrich Rakovec,et al.  State updating of a distributed hydrological model with Ensemble Kalman Filtering: Effects of updating frequency and observation network density on forecast accuracy , 2012 .

[46]  Jing Guo,et al.  Development and validation of observing‐system simulation experiments at NASA's Global Modeling and Assimilation Office , 2013 .

[47]  Jo Ueyama,et al.  Using wireless sensor networks in the sensor web for flood monitoring in Brazil , 2013, ISCRAM.

[48]  Simone Frigerio,et al.  Evaluating data quality collected by volunteers for first-level inspection of hydraulic structures in mountain catchments , 2014 .

[49]  G. Evensen Data Assimilation: The Ensemble Kalman Filter , 2006 .

[50]  Xi Chen,et al.  The streamflow estimation using the Xinanjiang rainfall runoff model and dual state-parameter estimation method , 2013 .

[51]  W. Russell Hamon Estimating Potential Evapotranspiration , 1960 .

[52]  Vladan Babovic,et al.  Neural networks as routine for error updating of numerical models , 2001 .

[53]  Peter C. Young,et al.  Recursive Estimation and Time Series Analysis , 1984 .

[54]  Ionel M. Navon,et al.  Optimality of variational data assimilation and its relationship with the Kalman filter and smoother , 2001 .

[55]  A. Weerts,et al.  Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall‐runoff models , 2006 .

[56]  Haksu Lee,et al.  Variational assimilation of streamflow into operational distributed hydrologic models: effect of spatiotemporal scale of adjustment , 2012 .

[57]  Clifford H. Dey,et al.  Observing-Systems Simulation Experiments: Past, Present, and Future , 1986 .

[58]  G. Evensen,et al.  Asynchronous data assimilation with the EnKF , 2010 .

[59]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .