On the sliding mode control of multivariable nonlinear systems

Sliding mode control of multivariable nonlinear systems is addressed, from the perspective of linear differential algebra, for a special but large class of linearizable systems known as differentially flat systems. Essential orders and differential flatness are shown to be, a relevant concept and a sensible requirement respectively, associated with the possibilities of designing static or dynamical sliding mode multivariable feedback regulators for nonlinear systems.

[1]  S. Sastry,et al.  Nonholonomic motion planning: steering using sinusoids , 1993, IEEE Trans. Autom. Control..

[2]  M. Fliess,et al.  A simplified approach of crane control via a generalized state-space model , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[3]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[4]  M. Fliess,et al.  Sur la commande en régime glissant , 1991 .

[5]  A. Zinober Deterministic control of uncertain systems , 1989, Proceedings. ICCON IEEE International Conference on Control and Applications.

[6]  G. Bartolini,et al.  Control of nonlinear variable structure systems , 1986 .

[7]  C. Moog,et al.  Essential orders and the non-linear decoupling problem , 1989 .

[8]  H. Kwatny,et al.  Variable structure regulation of partially linearizable dynamics , 1990 .

[9]  Jean-Baptiste Pomet,et al.  A non-exact Brunovsky form and dynamic feedback linearization , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[10]  J. Levine,et al.  NEW SUFFICIENT CONDITIONS FOR DYNAMIC FEEDBACK LINEARIZATION , 1990 .

[11]  Philippe Martin Contribution a l'etude des systemes differentiellement plats , 1992 .

[12]  A. Isidori Nonlinear Control Systems , 1985 .

[13]  Jessy W. Grizzle A linear algebraic framework for the analysis of discrete-time nonlinear systems , 1993 .

[14]  C. Moog,et al.  A linear algebraic framework for dynamic feedback linearization , 1995, IEEE Trans. Autom. Control..

[15]  Kar-Keung D. Young Controller Design for a Manipulator Using Theory of Variable Structure Systems , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[16]  Michel Fliess,et al.  Nonlinear control theory and differential algebra , 1988 .

[17]  Joachim Rudolph Une forme canonique en bouclage quasi statique , 1993 .

[18]  C. Moog,et al.  Structure invariance for uncertain nonlinear systems , 1994, IEEE Trans. Autom. Control..

[19]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[20]  J. J. Slotine,et al.  Tracking control of non-linear systems using sliding surfaces with application to robot manipulators , 1983, 1983 American Control Conference.

[21]  D. Aeyels Stabilization of a class of nonlinear systems by a smooth feedback control , 1985 .

[22]  Jean-Jacques E. Slotine,et al.  Sliding controller design for non-linear systems , 1984 .

[23]  H. Sira-Ramírez Differential geometric methods in variable-structure control , 1988 .

[24]  M. Fliess,et al.  A module theoretic approach to sliding mode control in linear systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[25]  Jessy W. Grizzle,et al.  Rank invariants of nonlinear systems , 1989 .

[26]  Claude H. Moog,et al.  Model matching and factorization for nonlinear systems: a structural approach , 1991 .

[27]  A. S.I. Zinober,et al.  Deterministric Control of Uncertain Systems , 1990 .