Incipient Wolframite Deposition at Panasqueira (Portugal): W-Rich Rutile and Tourmaline Compositions as Proxies for the Early Fluid Composition

The main event responsible for the deposition of tungsten at Panasqueira was closely associated with strong tourmalinization of the wall rocks. Tourmaline is coeval with a W-rich rutile (up to 8–10 wt % W), and both minerals record an early introduction of W in the system, just before the main W deposition. Uranium-Pb dating of the rutile by LA-ICP-MS yielded an age of 305.2 ± 5.7 Ma, which is 6 to 10 m.y. older than the K-Ar age of 296.3 ± 1.2 Ma obtained on muscovite, which was therefore not coeval with wolframite. Major and trace element concentration variations in tourmaline record fluid mixing between two end members, both considered to be of metamorphic derivation on the basis of rare earth element profiles. We report evidence for a fluid rich in Co, Cu, Pb, Sc, Sr, V, Cr, Nb, Ta, and Sn interpreted to be of local origin—e.g., well equilibrated with the host formations—and a fluid rich in Li, F, Fe, Mn, and W inferred to be of deep origin and related to biotite dehydration. The second fluid carried the metals (in particular Fe and Mn) that were necessary for wolframite deposition and that were not necessarily inherited from the wall rocks through fluid-rock interaction. Micrometer-scale variations in tourmaline and rutile crystal chemistry are indicative of pulsatory fluid input during tourmalinization.

[1]  J. Ague,et al.  Al-in-Hornblende Barometry of Southern New England Intrusions and Comparison with Metamorphic Bathograds , 2018 .

[2]  R. D. Fernández,et al.  Strike-slip shear zones of the Iberian Massif: Are they coeval? , 2017 .

[3]  J. A. Orjuela Rare Earth Element , 2017 .

[4]  A. Meixner,et al.  Tourmaline as a petrogenetic indicator in the Pfitsch Formation, Western Tauern Window, Eastern Alps , 2017 .

[5]  R. F. Ribeiro Gravimetric Modelling and Geological Interpretation of Argemela-Panasqueira Area , 2017 .

[6]  F. Noronha Fluids and Variscan Metallogenesis in Granite Related Systems in Portugal , 2017 .

[7]  U. Linnemann,et al.  S-type granite generation and emplacement during a regional switch from extensional to contractional deformation (Central Iberian Zone, Iberian autochthonous domain, Variscan Orogeny) , 2017, International Journal of Earth Sciences.

[8]  R. Albert,et al.  Tectonic evolution of Variscan Iberia: Gondwana–Laurussia collision revisited , 2016 .

[9]  H. Sakuma,et al.  Density and isothermal compressibility of supercritical H2O–NaCl fluid: molecular dynamics study from 673 to 2000 K, 0.2 to 2 GPa, and 0 to 22 wt% NaCl concentrations , 2016 .

[10]  J. G. Barreiro,et al.  2-D thermal modeling of HT–LP metamorphism in NW and Central Iberia: Implications for Variscan magmatism, rheology of the lithosphere and orogenic evolution , 2015 .

[11]  V. Bosse,et al.  Sensitivity Enhancement in LA-ICP-MS by N2 Addition to Carrier Gas: Application to Radiometric Dating of U-Th-Bearing Minerals , 2014 .

[12]  J. Dubessy,et al.  In Situ Quantitative Measurement of Rare Earth Elements in Uranium Oxides by Laser Ablation‐Inductively Coupled Plasma‐Mass Spectrometry , 2013 .

[13]  J. Wijbrans,et al.  Thickening and exhumation of the Variscan roots in the Iberian Central System:Tectonothermal processes and 40Ar/39Ar ages , 2013 .

[14]  P. J.a.,et al.  U-Pb LA-ICPMS dating using accessory mineral standards with variable common Pb , 2013 .

[15]  J. Dubessy,et al.  Improvement of the determination of element concentrations in quartz-hosted fluid inclusions by LA-ICP-MS and Pitzer thermodynamic modeling of ice melting temperature , 2012 .

[16]  P. Vermeesch On the visualisation of detrital age distributions , 2012 .

[17]  J. Hellstrom,et al.  Iolite: Freeware for the visualisation and processing of mass spectrometric data , 2011 .

[18]  Shao‐Yong Jiang,et al.  Tourmaline Isotopes: No Element Left Behind , 2011 .

[19]  R. Trumbull,et al.  Tourmaline as a Recorder of Ore-Forming Processes , 2011 .

[20]  F. Hawthorne,et al.  Tourmaline the Indicator Mineral: From Atomic Arrangement to Viking Navigation , 2011 .

[21]  G. Gutiérrez-Alonso,et al.  Iberian late-Variscan granitoids: Some considerations on crustal sources and the significance of “mantle extraction ages” , 2011 .

[22]  D. London Experimental synthesis and stability of tourmaline: a historical overview , 2011 .

[23]  B. Dutrow,et al.  The incorporation of fluorine in tourmaline: internal crystallographic controls or external environmental influences? , 2011 .

[24]  V. V. Hinsberg Preliminary experimental data on trace-element partitioning between tourmaline and silicate melt , 2011 .

[25]  P. Olivier,et al.  Magmatic structures and kinematics emplacement of the Variscan granites from Central Portugal (Serra da Estrela and Castro Daire areas) , 2010 .

[26]  António Mateus,et al.  SISTEMAS MINERALIZANTES EPIGENÉTICOS NA ZONA CENTRO-IBÉRICA;EXPRESSÃO DA ESTRUTURAÇÃO OROGÉNICA MESO- A TARDI-VARISCA , 2010 .

[27]  P. Renne,et al.  The isotopic composition of atmospheric argon and 40Ar/39Ar geochronology: Time for a change? , 2009 .

[28]  Paulo J. V. Ferraz,et al.  Argemela, a high-tonnage Sn-Li deposit in Central Portugal [Abstract] , 2009 .

[29]  A. Marcos,et al.  Convergence in a thermally softened thick crust: Variscan intracontinental tectonics in Iberian plate rocks , 2007 .

[30]  R. Linnen,et al.  Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization, in Linnen R.L. and Samson I.M., eds., rare-element geochemistry and mineral deposits. , 2005 .

[31]  P. Burnard,et al.  Importance of mantle derived fluids during granite associated hydrothermal circulation: He and Ar isotopes of ore minerals from Panasqueira , 2004 .

[32]  D. García Travaux présentés pour l'obtention du diplôme Habilitation à Diriger les Recherches en Sciences de la Terre et de l'Univers, Espace , 2004 .

[33]  M. Villeneuve,et al.  An intercalibration study of the Fish Canyon sanidine and biotite 40Ar/39Ar standards and some comments on the age of the Fish Canyon Tuff , 2003 .

[34]  T. Spell,et al.  Characterization and calibration of 40Ar/39Ar dating standards , 2003 .

[35]  J. D. Rosa,et al.  The Appinite–Migmatite Complex of Sanabria, NW Iberian Massif, Spain , 2003 .

[36]  A. Neiva Portuguese granites associated with Sn-W and Au mineralizations , 2002 .

[37]  Alexandre Lourenço Paleofluidos e mineralizações associadas às fases tardias da Orogenia Hercínica , 2002 .

[38]  P. Renne,et al.  Determination of the half-life of Ar-37 by mass spectrometry , 2000 .

[39]  D. Polya,et al.  Extensional failure and hydraulic valving at Minas da Panasqueira, Portugal: evidence from vein spatial distributions, displacements and geometries , 2000 .

[40]  J. Connolly Mid-Crustal Focused Fluid Movement: Thermal Consequences and Silica Transport , 1997 .

[41]  Volker Lueders,et al.  Contribution of infrared microscopy to fluid inclusion studies in some opaque minerals (wolframite, stibnite, bournonite); metallogenic implications , 1996 .

[42]  D. Gebauer,et al.  Evolution of the Western European continental crust: implications from Nd and Pb isotopes in Iberian sediments , 1995 .

[43]  F. Poitrasson,et al.  Hydrothermal remobilization of rare earth elements and its effect on Nd isotopes in rhyolite and granite , 1995 .

[44]  D. B. DrNcwELL,et al.  The effect of F on the density of haplogranite melt , 1993 .

[45]  D. Polya,et al.  Textural evolution of W-Cu-Sn-bearing hydrothermal veins at Minas da Panasqueira, Portugal , 1991, Mineralogical Magazine.

[46]  D. Polya Chemistry of the main-stage ore-forming fluids of the Panasqueira W-Cu(Ag)-Sn deposit, Portugal; implications for models of ore genesis , 1989 .

[47]  M. Bickle,et al.  The transport of heat and matter by fluids during metamorphism , 1987 .

[48]  Dnnnnn J. HeNnyr Tourmaline as a petrogenetic indicator mineral: an example from the staurolite-grade metapelites of NW Maine , 1985 .

[49]  H. Priem,et al.  Tracing crustal evolution in the NW Iberian Peninsula through the RbSr and UPb systematics of Palaeozoic granitoids: a review , 1984 .

[50]  J. C. Roddick,et al.  High precision intercalibration of 40Ar-39Ar standards , 1983 .

[51]  E. R. Oxburgh Fluids in the Earth's Crust , 1980, Mineralogical Magazine.

[52]  R. Rye,et al.  Geologic, fluid inclusion, and stable isotope studies of the tin-tungsten deposits of Panasqueira, Portugal , 1979 .

[53]  R. Steiger,et al.  Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology , 1977 .

[54]  J. Kramers,et al.  Approximation of terrestrial lead isotope evolution by a two-stage model , 1975 .