The toughening behavior of the PP/POE alternating multilayered blends under EWF and impact tensile methods

[1]  Shaoyun Guo,et al.  Unique impact behavior and toughening mechanism of the polypropylene and poly(ethylene-co-octene) alternating multilayered blends with superior toughness , 2014 .

[2]  Shaoyun Guo,et al.  Morphological evolution and toughening mechanism of polypropylene and polypropylene/poly(ethylene-co-octene) alternating multilayered materials with enhanced low-temperature toughness , 2014 .

[3]  Shaoyun Guo,et al.  The multilayered distribution of intumescent flame retardants and its influence on the fire and mechanical properties of polypropylene , 2014 .

[4]  Q. Fu,et al.  Hierarchical structure and unique impact behavior of polypropylene/ethylene-octene copolymer blends as obtained via dynamic packing injection molding , 2013 .

[5]  L. Korley,et al.  Toward anisotropic materials via forced assembly coextrusion. , 2012, ACS applied materials & interfaces.

[6]  M. Stamm,et al.  Influence of S/B middle block composition on the morphology and the mechanical response of polystyrene-poly(styrene-co-butadiene)-polystyrene triblock copolymers , 2012 .

[7]  I Corni,et al.  A review of experimental techniques to produce a nacre-like structure , 2012, Bioinspiration & biomimetics.

[8]  R. Libanori,et al.  Hierarchical reinforcement of polyurethane-based composites with inorganic micro- and nanoplatelets , 2012 .

[9]  Baiquan Chen,et al.  Effect of composition on fracture behavior of polypropylene–wollastonite–polyolefin elastomer system , 2011 .

[10]  Wei Yang,et al.  Fracture behavior of bimodal polyethylene: Effect of molecular weight distribution characteristics , 2011 .

[11]  Ludwig J. Gauckler,et al.  Platelet-reinforced polymer matrix composites by combined gel-casting and hot-pressing. Part I: Polypropylene matrix composites , 2010 .

[12]  Ludwig J. Gauckler,et al.  Platelet-reinforced polymer matrix composites by combined gel-casting and hot-pressing. Part II: Thermoplastic polyurethane matrix composites , 2010 .

[13]  J. Karger‐Kocsis,et al.  Application of the essential work of fracture (EWF) concept for polymers, related blends and composites: A review , 2010 .

[14]  M. Maspoch,et al.  Essential work of fracture analysis of the tearing of a ductile polymer film , 2010 .

[15]  Wei-Han Huang,et al.  Bioinspired assembly of surface-roughened nanoplatelets. , 2010, Journal of colloid and interface science.

[16]  A. Hiltner,et al.  Structure and Gas Barrier Properties of Poly(propylene-graft-maleic anhydride)/Phosphate Glass Composites Prepared by Microlayer Coextrusion , 2010 .

[17]  Wei Yang,et al.  Essential Work of Fracture Evaluation of Compression-Molded Polypropylene/Ethylene and 1-Octene Copolymer Blends , 2010 .

[18]  A. B. Martínez,et al.  The Essential Work of Fracture (EWF) method – Analyzing the Post-Yielding Fracture Mechanics of polymers , 2009 .

[19]  Shaoyun Guo,et al.  Structure and properties of electrically conducting composites consisting of alternating layers of pure polypropylene and polypropylene with a carbon black filler , 2008 .

[20]  Ludwig J. Gauckler,et al.  Bioinspired Design and Assembly of Platelet Reinforced Polymer Films , 2008, Science.

[21]  Donald R Paul,et al.  TPO based nanocomposites. Part 1. Morphology and mechanical properties , 2005 .

[22]  Zhong‐Ming Li,et al.  Essential work of fracture (EWF) analysis for polypropylene grafted with maleic anhydride modified polypropylene/calcium carbonate composites , 2005 .

[23]  Christoph Weder,et al.  Photopatternable Reflective Films Produced by Nanolayer Extrusion , 2004 .

[24]  Huajian Gao,et al.  A study of fracture mechanisms in biological nano-composites via the virtual internal bond model , 2004 .

[25]  Y. Mai,et al.  On tearing of ductile polymer films using the essential work of fracture (EWF) method , 2003 .

[26]  J. Karger‐Kocsis,et al.  Plane stress fracture toughness of physically aged plasticized PETG as assessed by the essential work of fracture (EWF) method , 2003 .

[27]  Rui Huang,et al.  Fibrillar morphology of elastomer‐modified polypropylene: Effect of interface adhesion and processing conditions , 2002 .

[28]  J. Karger‐Kocsis,et al.  Plane-stress fracture behavior of syndiotactic polypropylenes of various crystallinity as assessed by the essential work of fracture method , 2002 .

[29]  Li Liangbin,et al.  Effect of fibrillar morphology on elastomer‐modified polypropylene , 2002 .

[30]  P. Fratzl,et al.  Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. , 2000, Biophysical journal.

[31]  Eric Baer,et al.  Novel structures by microlayer coextrusion-talc-filled PP, PC/SAN, and HDPE/LLDPE , 1997 .

[32]  F. Cui,et al.  Observations of damage morphologies in nacre during deformation and fracture , 1995 .

[33]  J. Im,et al.  Crazing phenomena in PC/SAN microlayer composites , 1994 .

[34]  A. P. Jackson,et al.  The mechanical design of nacre , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[35]  A. Hiltner,et al.  Hierarchical structure in polymeric materials. , 1987, Science.

[36]  B. Cotterell,et al.  The essential work of plane stress ductile fracture , 1977, International Journal of Fracture.

[37]  John D. Currey,et al.  Mechanical properties of mother of pearl in tension , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[38]  K. B. Broberg,et al.  On stable crack growth , 1975 .

[39]  S. Hashemi,et al.  Fracture behaviour of polyethylene naphthalate (PEN) , 2002 .