Small-angle neutron scattering and cyclic voltammetry study on electrochemically oxidized and reduced pyrolytic carbon

Abstract The electrochemical double layer capacitance and internal surface area of a pyrolytic carbon material after electrochemical oxidation and subsequent reduction was studied with cyclic voltammetry and small-angle neutron scattering. Oxidation yields an enhanced internal surface area (activation), and subsequent reduction causes a decrease of this internal surface area. The change of the Porod constant, as obtained from small-angle neutron scattering, reveals that the decrease in internal surface area is not caused merely by a closing or narrowing of the pores, but by a partial collapse of the pore network.

[1]  D. Alliata,et al.  IN SITU AFM STUDY OF INTERLAYER SPACING DURING ANION INTERCALATION INTO HOPG IN AQUEOUS ELECTROLYTE , 1999 .

[2]  Jeff Dahn,et al.  Correlation Between Lithium Intercalation Capacity and Microstructure in Hard Carbons , 1996 .

[3]  J. C. Lewis,et al.  Vitreous carbon — A new form of carbon , 1967 .

[4]  J. C. Lewis,et al.  Vitreous carbon as a crucible material for semiconductors , 1963 .

[5]  Hardcover,et al.  Carbon: Electrochemical and Physicochemical Properties , 1988 .

[6]  C. Barbero,et al.  Studies of surface-modified glassy carbon electrodes obtained by electrochemical treatment: Its effect on Ru(bpy)2+3 adsorption and the electron transfer rates of the Fe2+/Fe3+ couple , 1988 .

[7]  G. Porod,et al.  Die Röntgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen , 1952 .

[8]  W. Ruland Apparent fractal dimensions obtained from small-angle scattering of carbon materials , 2001 .

[9]  A. Wokaun,et al.  Evolution of BET internal surface area in glassy carbon powder during thermal oxidation , 2002 .

[10]  F. Beck,et al.  Electrochemical redox capacity of thermally exfoliated graphite in sulfuric acid , 1994 .

[11]  D. I. Svergun,et al.  Structure Analysis by Small-Angle X-Ray and Neutron Scattering , 1987 .

[12]  Rüdiger Kötz,et al.  Thick Active Layers of Electrochemically Modified Glassy Carbon. Electrochemical Impedance Studies , 2000 .

[13]  R. Kötz,et al.  A model for the film growth in samples with two moving reaction frontiers — an application and extension of the unreacted-core model , 2000 .

[14]  Martin Carlen,et al.  A Study on Oxidized Glassy Carbon sheets for Bipolar Supercapacitor Electrodes , 1999 .

[15]  F. Beck,et al.  Transport of intercalated anions in graphite according to Walden's rule , 1995 .

[16]  C. Barbero,et al.  Electrochemically Modified Glassy Carbon for Capacitor Electrodes Characterization of Thick Anodic Layers by Cyclic Voltammetry, Differential Electrochemical Mass Spectrometry, Spectroscopic Ellipsometry, X‐Ray Photoelectron Spectroscopy, FTIR, and AFM , 2000 .

[17]  A. Wokaun,et al.  Analytical solution to a growth problem with two moving boundaries , 2003 .

[18]  N. S. Gingrich,et al.  Fourier Integral Analysis of X-Ray Powder Patterns , 1934 .

[19]  H. Boehm,et al.  Basische Oberflächenoxide auf Kohlenstoff—I. Adsorption von säuren , 1970 .

[20]  V. Drits,et al.  X-Ray Diffraction by Disordered Lamellar Structures , 1990 .

[21]  W. Ruland,et al.  X-ray small-angle scattering of non-graphitizable carbons , 1968 .

[22]  F. Beck,et al.  Graphite intercalation compounds as positive electrodes in galvanic cells , 1981 .

[23]  H. Boehm.,et al.  Oberflächenoxyde des Kohlenstoffs , 1964 .

[24]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[25]  G. Goerigk,et al.  X-ray scattering and adsorption studies of thermally oxidized glassy carbon , 1999 .

[26]  A. Braun,et al.  SAXS chord length distribution analysis and porosity estimation of activated and non-activated glassy carbon , 2003 .

[27]  O. Glatter,et al.  19 – Small-Angle X-ray Scattering , 1973 .

[28]  F. Beck,et al.  Corrosion of graphite intercalation compounds , 1986 .

[29]  Artur Braun,et al.  Exponential growth of electrochemical double layer capacitance in glassy carbon during thermal oxidation , 2003 .