Rational Points of Bounded Height on Compactifications of Anisotropic Tori
暂无分享,去创建一个
[1] J. Colliot-Thélène,et al. La $R$-équivalence sur les tores , 1977 .
[2] Günter Ewald,et al. CONVEX BODIES AND ALGEBRAIC GEOMETRY , 1985 .
[3] Hubert Delange,et al. Généralisation du théorème de Ikehara , 1954 .
[4] André Weil,et al. Adeles and algebraic groups , 1982 .
[5] Emmanuel Peyre,et al. HAUTEURS ET MESURES DE TAMAGAWA SUR LES VARIÉTÉS DE FANO , 1995 .
[6] M. Koecher,et al. Positivitatsbereiche Im R n , 1957 .
[7] S. Schanuel,et al. On heights in number fields , 1964 .
[8] B. Kunyavskii,et al. On the Néron-Severi torus of a rational surface , 1982 .
[9] B. È. Kunjavskiĭ. ON TORI WITH A BIQUADRATIC SPLITTING FIELD , 1978 .
[10] Takashi Ono,et al. Arithmetic of Algebraic Tori , 1961 .
[11] B. Z. Moroz. Analytic Arithmetic in Algebraic Number Fields , 1986 .
[12] T. Delzant,et al. Hamiltoniens périodiques et images convexes de l'application moment , 1988 .
[13] J. Sansuc,et al. Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres. , 1981 .
[14] V. V. Batyrev,et al. Sur le nombre des points rationnels de hauteur borné des variétés algébriques , 1990 .
[15] Oscar S. Rothaus. Domains of Positivity , 1960 .
[16] L. Szpiro,et al. Séminaire sur les pinceaux arithmétiques : la conjecture de Mordell , 1985 .
[17] V. Danilov,et al. THE GEOMETRY OF TORIC VARIETIES , 1978 .
[18] M. Audin. The Topology of Torus Actions on Symplectic Manifolds , 1991 .
[19] J. Tate. Fourier analysis in number fields and Hecke's zeta-functions , 1950 .
[20] Gerd Faltings,et al. Calculus on arithmetic surfaces , 1984 .
[21] W. Burnside. Theory of Functions , 1899, Nature.
[22] V. Voskresenskii. PROJECTIVE INVARIANT DEMAZURE MODELS , 1983 .
[23] P. Draxl. L-Funktionen Algebraischer Tori☆ , 1971 .
[24] T. Ono. ON THE TAMAGAWA NUMBER OF ALGEBRAIC TORI , 1963 .
[25] Michel Demazure,et al. Sous-groupes algébriques de rang maximum du groupe de Cremona , 1970 .
[26] M. Robbiani. Rational points of bounded height on Del Pezzo surfaces of degree six , 1995 .
[27] J. Franke,et al. Rational points of bounded height on Fano varieties , 1989 .
[28] David A. Cox. The homogeneous coordinate ring of a toric variety , 2013 .