Carrier Phase and Amplitude Estimation for Phase Shift Keying Using Pilots and Data

We consider least squares estimators of carrier phase and amplitude from a noisy communications signal that contains both pilot signals, known to the receiver, and data signals, unknown to the receiver. We focus on signaling constellations that have symbols evenly distributed on the complex unit circle, i.e., M-ary phase shift keying. We show, under reasonably mild conditions on the distribution of the noise, that the least squares estimator of carrier phase is strongly consistent and asymptotically normally distributed. However, the amplitude estimator is asymptotically biased and converges to a positive real number that is a function of the true carrier amplitude, the noise distribution and the size of the constellation. This appears to be the first time that the statistical properties of a non-data-aided estimator for carrier amplitude have been analyzed theoretically. The results of Monte Carlo simulations are provided and these agree with the theoretical results.

[1]  R. V. Mises On the Asymptotic Distribution of Differentiable Statistical Functions , 1947 .

[2]  S. C. Kwatra,et al.  An analysis of the MPSK scheme with differential recursive detection (DRD) , 1991, [1991 Proceedings] 41st IEEE Vehicular Technology Conference.

[3]  Luc Vandendorpe,et al.  A Theoretical Framework for Iterative Synchronization Based on the Sum–Product and the Expectation-Maximization Algorithms , 2007, IEEE Transactions on Signal Processing.

[4]  Bill Moran,et al.  A P ] 2 N ov 2 01 2 POLYNOMIAL PHASE ESTIMATION BY PHASE UNWRAPPING By , 2012 .

[5]  Nader Sheikholeslami Alagha,et al.  Cramer-Rao bounds of SNR estimates for BPSK and QPSK modulated signals , 2001, IEEE Communications Letters.

[6]  H. Bruneel,et al.  Carrier phase and frequency estimation for pilot-symbol assisted transmission: bounds and algorithms , 2005, IEEE Transactions on Signal Processing.

[7]  Heidi Steendam,et al.  Low-SNR limit of the Cramer-Rao bound for estimating the carrier phase and frequency of a PAM, PSK, or QAM waveform , 2001, IEEE Communications Letters.

[8]  Umberto Mengali,et al.  Approximate ML decoding of coded PSK with no explicit carrier phase reference , 1994, IEEE Trans. Commun..

[9]  William Moran,et al.  Cramer-Rao lower bounds for QAM phase and frequency estimation , 2001, IEEE Trans. Commun..

[10]  Stefano Cioni,et al.  A performance review of PSP for joint phase/frequency and data estimation in future broadband satellite networks , 2001, IEEE J. Sel. Areas Commun..

[11]  D. Pollard New Ways to Prove Central Limit Theorems , 1985, Econometric Theory.

[12]  Wim Sweldens Fast block noncoherent decoding , 2001, IEEE Communications Letters.

[13]  William G. Cowley,et al.  Simultaneous Symbol Timing and Frame Synchronization for Phase Shift Keying , 2014, IEEE Transactions on Communications.

[14]  J. Massey,et al.  Optimum Frame Synchronization , 1972, IEEE Trans. Commun..

[15]  Stephen G. Wilson,et al.  Multi-symbol detection of M-DPSK , 1989, IEEE Global Telecommunications Conference, 1989, and Exhibition. 'Communications Technology for the 1990s and Beyond.

[16]  Heinrich Meyr,et al.  Digital filter and square timing recovery , 1988, IEEE Trans. Commun..

[17]  I. Vaughan L. Clarkson,et al.  Polynomial Phase Estimation by Least Squares Phase Unwrapping , 2014, IEEE Trans. Signal Process..

[18]  Luc Vandendorpe,et al.  Code-Aided Turbo Synchronization , 2007, Proceedings of the IEEE.

[19]  J. Norris Appendix: probability and measure , 1997 .

[20]  Robert W. Heath,et al.  Blind Channel Estimation for MIMO-OFDM Systems , 2007, IEEE Transactions on Vehicular Technology.

[21]  I. Vaughan L. Clarkson,et al.  Direction Estimation by Minimum Squared Arc Length , 2012, IEEE Transactions on Signal Processing.

[22]  Daniel J. Ryan,et al.  Linear-time block noncoherent detection of PSK , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[23]  William G. Cowley,et al.  Phase and frequency estimation for PSK packets: bounds and algorithms , 1996, IEEE Trans. Commun..

[24]  Luc Vandendorpe,et al.  A Theoretical Framework for Soft-Information-Based Synchronization in Iterative (Turbo) Receivers , 2005, EURASIP J. Wirel. Commun. Netw..

[25]  J. Lamperti ON CONVERGENCE OF STOCHASTIC PROCESSES , 1962 .

[26]  Norman C. Beaulieu,et al.  A comparison of SNR estimation techniques for the AWGN channel , 2000, IEEE Trans. Commun..

[27]  Umberto Mengali,et al.  Synchronization Techniques for Digital Receivers , 1997, Applications of Communications Theory.

[28]  Kenneth M. Mackenthun,et al.  A fast algorithm for multiple-symbol differential detection of MPSK , 1994, IEEE Trans. Commun..

[29]  Jean Pierre Delmas Closed-Form Expressions of the Exact Cramer-Rao Bound for Parameter Estimation of BPSK, MSK, or QPSK Waveforms , 2006, IEEE Signal Processing Letters.

[30]  I. Vaughan L. Clarkson,et al.  Noncoherent least squares estimators of carrier phase and amplitude , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[31]  Neele von Deetzen,et al.  Design of bandwidth-efficient unequal error protection LDPC codes , 2010, IEEE Transactions on Communications.

[32]  Gerald Matz,et al.  Wireless Communications Over Rapidly Time-Varying Channels , 2011 .

[33]  Marc Moeneclaey,et al.  On the true and the modified Cramer-Rao bounds for the estimation of a scalar parameter in the presence of nuisance parameters , 1998, IEEE Trans. Commun..

[34]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[35]  Marco Luise,et al.  Embedding carrier phase recovery into iterative decoding of turbo-coded linear modulations , 2004, IEEE Transactions on Communications.

[36]  W. G. Cowley,et al.  Reference symbols can improve performance over differential coding in ML and near-ML detectors , 1998, Signal Process..

[37]  Masoud Salehi,et al.  Turbo Coded Modulation for Unequal Error Protection , 2008, IEEE Transactions on Communications.

[38]  André Pollok,et al.  Modified Cramér-Rao Bounds for Continuous-Phase Modulated Signals , 2014, IEEE Transactions on Communications.

[39]  Dimitrios Makrakis,et al.  Optimal noncoherent detection of PSK signals , 1990 .

[40]  Joseph Tabrikian,et al.  Non-Bayesian Periodic Cramér-Rao Bound , 2013, IEEE Transactions on Signal Processing.

[41]  Dariush Divsalar,et al.  Multiple-symbol differential detection of MPSK , 1990, IEEE Trans. Commun..

[42]  I. Vaughan L. Clarkson,et al.  Frequency Estimation by Phase Unwrapping , 2010, IEEE Transactions on Signal Processing.

[43]  Andrew J. Viterbi,et al.  Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission , 1983, IEEE Trans. Inf. Theory.

[44]  Umberto Mengali,et al.  The modified Cramer-Rao bound and its application to synchronization problems , 1994, IEEE Trans. Commun..