Towards parameter estimation in wildfire spread simulation based on sequential Monte Carlo methods

Simulation models rely on many parameters to model the structure and behavior of systems under study. To achieve accurate simulation results, there is a need to develop methods to dynamically estimate the correct set of model parameters for a given simulation scenario. In this paper, we present a method to dynamically estimate model parameters by assimilating real time data using Sequential Monte Carlo (SMC) methods. We formulate the problem of single and multiple parameter estimations based on the context of wildfire spread simulation. Preliminary results show that the developed method can be applied to parameter estimation in wildfire spread simulation to produce more accurate simulation results. The complexity and difficulties in multiple parameter estimation are discussed as well.

[1]  Xiaolin Hu,et al.  DEVS-FIRE: design and application of formal discrete event wildfire spread and suppression models , 2012, Simul..

[2]  Thomas B. Schön,et al.  Estimation of Nonlinear Dynamic Systems : Theory and Applications , 2006 .

[3]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[4]  Xiaolin Hu,et al.  DEVS-FIRE: Towards an Integrated Simulation Environment for Surface Wildfire Spread and Containment , 2008, Simul..

[5]  M. Stadtherr,et al.  Deterministic Global Optimization for Parameter Estimation of Dynamic Systems , 2006 .

[6]  Xiaolin Hu,et al.  State estimation using particle filters in wildfire spread simulation , 2009, SpringSim '09.

[7]  Xiaolin Hu,et al.  Towards applications of particle filters in wildfire spread simulation , 2008, 2008 Winter Simulation Conference.

[8]  Gregor Heinrich Parameter estimation for text analysis , 2009 .

[9]  X. Lee,et al.  Introduction to wildland fire , 1997 .

[10]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[11]  J. Aldrich R.A. Fisher and the making of maximum likelihood 1912-1922 , 1997 .

[12]  Xiaolin Hu,et al.  Data assimilation using sequential monte carlo methods in wildfire spread simulation , 2012, TOMC.

[13]  B. P. Ziegler,et al.  Theory of Modeling and Simulation , 1976 .

[14]  Vivek Dua A Decomposition Approach for Parameter Estimation of System of Ordinary Differential Equations , 2010 .

[15]  Aggelos K. Katsaggelos,et al.  Parameter Estimation in TV Image Restoration Using Variational Distribution Approximation , 2008, IEEE Transactions on Image Processing.

[16]  Xiaolin Hu,et al.  Estimation of new ignited fires using particle filters in wildfire spread simulation , 2011, SpringSim.