A New Coherency Formalism for Change Detection and Phenomenology in SAR Imagery: A Field Approach

Optimal utilization of complex synthetic aperture radar imagery for coherent change detection (CCD) is achieved by maximizing the amount of information extracted from the coherent correlation of images. Conventional techniques cannot fully exploit the coherent information due to limited application of few products or indicators, e.g., correlation factor and phase maps. Also, considering the lack of a systematic formulation of change observables and their nature, unsupervised change detection or classification is not feasible. To address this, an analytic framework is established by taking advantage of the analogy to partially polarized electromagnetic fields to introduce vectors and observables that can establish a complete change space. Decomposition of the coherent correlation or change characteristics into this basis set can provide a better understanding of the associated change phenomenology.

[1]  R. Keith Raney,et al.  Hybrid-Polarity SAR Architecture , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[2]  Eric Pottier,et al.  Application of the «H / A / α» Polarimetric Decomposition Theorem for Unsupervised Classification of Fully Polarimetric SAR Data Based on the Wishart Distribution , 2000 .

[3]  Paris W. Vachon,et al.  Coherence estimation for SAR imagery , 1999, IEEE Trans. Geosci. Remote. Sens..

[4]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[5]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[6]  Konstantinos Papathanassiou,et al.  On the Interferometric Coherence: A Multifrequency and Multitemporal Analysis. , 1997 .

[7]  R. Keith Raney,et al.  Dual-polarized SAR and Stokes parameters , 2006, IEEE Geoscience and Remote Sensing Letters.

[8]  Jakob J. van Zyl,et al.  Change detection techniques for ERS-1 SAR data , 1993, IEEE Trans. Geosci. Remote. Sens..

[9]  Ridha Touzi,et al.  Wetland characterization using polarimetric RADARSAT-2 capability , 2007 .

[10]  E. H. Linfoot Principles of Optics , 1961 .

[11]  J. R. Huynen,et al.  Measurement of the target scattering matrix , 1965 .

[12]  George Gabriel Stokes,et al.  On the Composition and Resolution of Streams of Polarized Light from different Sources , 2009 .

[13]  Ridha Touzi,et al.  Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[14]  William L. Cameron,et al.  Simulated polarimetric signatures of primitive geometrical shapes , 1996, IEEE Trans. Geosci. Remote. Sens..

[15]  Thomas L. Ainsworth,et al.  Unsupervised classification using polarimetric decomposition and the complex Wishart classifier , 1999, IEEE Trans. Geosci. Remote. Sens..

[16]  Max Born,et al.  Principles of optics - electromagnetic theory of propagation, interference and diffraction of light (7. ed.) , 1999 .

[17]  Lars M. H. Ulander,et al.  Repeat-pass SAR interferometry over forested terrain , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Ridha Touzi,et al.  Characterization of target symmetric scattering using polarimetric SARs , 2002, IEEE Trans. Geosci. Remote. Sens..