DSP-Based ADI-PML Formulations for Truncating Linear Debye and Lorentz Dispersive FDTD Domains

An efficient and unconditional stable formulations of the perfectly matched layer (PML) are presented for truncating linear Debye and Lorentz dispersive Finite Difference Time Domain (FDTD) grids. The formulations incorporate the Digital Signal Processing algorithms developed for digital filters into the Alternating Direction Implicit FDTD method. Numerical examples are included to validated the proposed formulations.

[1]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[2]  Jean-Pierre Berenger,et al.  Evanescent waves in PML's: origin of the numerical reflection in wave-structure interaction problems , 1999 .

[3]  S. Cummer,et al.  Perfectly matched layer behavior in negative refractive index materials , 2004, IEEE Antennas and Wireless Propagation Letters.

[4]  Weng Cho Chew,et al.  A general approach to extend Berenger's absorbing boundary condition to anisotropic and dispersive media , 1998 .

[5]  Levent Sevgi,et al.  A novel finite-difference time-domain wave propagator , 2000 .

[6]  Abdullah Y. Oztoprak,et al.  DSP techniques for implementation of perfectly matched layer for truncating FDTD domains , 2002 .

[7]  T. Bell,et al.  Characterization of terminal impedance and radiation properties of a horizontal VLF antenna over Antarctic ice , 2006 .

[8]  S. Cummer,et al.  A simple, nearly perfectly matched layer for general electromagnetic media , 2003, IEEE Microwave and Wireless Components Letters.

[9]  S. Gedney An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices , 1996 .

[10]  U. Inan,et al.  A PML utilizing k-vector information as applied to the whistler mode in a magnetized plasma , 2006, IEEE Transactions on Antennas and Propagation.

[11]  John G. Proakis,et al.  Digital signal processing (3rd ed.): principles, algorithms, and applications , 1996 .

[12]  K. Nagashima,et al.  The magneto-ionic theory and its applications to the ionosphere: by J. A. Ratcliffe. 206 pages, diagrams, 834 × 534 in. New York, Cambridge University Press, 1959. Price, $7.50 , 1959 .

[13]  J. Callen Fundamentals of Plasma Physics , 2004 .

[14]  J. Bérenger,et al.  Application of the CFS PML to the absorption of evanescent waves in waveguides , 2002, IEEE Microwave and Wireless Components Letters.

[15]  Marc ThÈvenot,et al.  A FDTD scheme for the computation of VLF-LF propagation in the anisotropic earth-ionosphere waveguide , 1999, Ann. des Télécommunications.

[16]  R. Luebbers,et al.  The Finite Difference Time Domain Method for Electromagnetics , 1993 .

[17]  Jin-Peng Fang,et al.  Closed-form expression of numerical reflection coefficient at PML interfaces and optimization of PML performance , 1996 .

[18]  U. Inan,et al.  Subionospheric VLF signatures of oblique (nonducted) whistler‐induced precipitation , 1999 .

[19]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[20]  T. Namiki,et al.  A new FDTD algorithm based on alternating-direction implicit method , 1999 .

[21]  Patrick Joly,et al.  Stability of perfectly matched layers, group velocities and anisotropic waves , 2003 .

[22]  M. S. Sarto,et al.  Suppression of late-time instabilities in 3-D-FDTD analyses by combining digital filtering techniques and efficient boundary conditions , 2001 .

[23]  Jiayuan Fang,et al.  Generalized perfectly matched layer-an extension of Berenger's perfectly matched layer boundary condition , 1995 .

[24]  Stephen D. Gedney,et al.  Convolution PML (CPML): An efficient FDTD implementation of the CFS–PML for arbitrary media , 2000 .

[25]  Gang Liu,et al.  Perfectly matched layer media with CFS for an unconditionally stable ADI-FDTD method , 2001 .

[26]  D. Kalluri,et al.  Three-dimensional FDTD simulation of electromagnetic wave transformation in a dynamic inhomogeneous magnetized plasma , 1999 .

[27]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[28]  Ke-Li Wu,et al.  A compact 2-D full-wave finite-difference frequency-domain method for general guided wave structures , 2002 .

[29]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[30]  Weng Cho Chew,et al.  A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates , 1994 .

[31]  R. J. Luebbers,et al.  Piecewise linear recursive convolution for dispersive media using FDTD , 1996 .

[32]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[33]  O. Ramadan Unconditionally stable ADI-FDTD formulations of the APML for frequency-dependent media , 2004, IEEE Microwave and Wireless Components Letters.

[34]  M.W. Chevalier,et al.  A Technique for Efficiently Modeling Long-Path Propagation for Use in Both FDFD and FDTD , 2006, IEEE Antennas and Wireless Propagation Letters.

[35]  K. G. Budden The Wave-guide mode theory of wave propagation , 1963 .

[36]  O. Ramadan Unconditionally stable ADI-FDTD implementation of PML for frequency dispersive Debye media , 2004 .

[37]  John G. Proakis,et al.  Digital Signal Processing: Principles, Algorithms, and Applications , 1992 .

[38]  M.W. Chevalier,et al.  A PML using a convolutional curl operator and a numerical reflection coefficient for general linear media , 2004, IEEE Transactions on Antennas and Propagation.

[39]  R. Helliwell,et al.  Whistlers and Related Ionospheric Phenomena , 1965 .

[40]  R. Gendrin Le guidage des whistlers par le champ magnetique , 1961 .