Monolithic passively mode-locked lasers using quantum-dot or quantum-well materials grown on GaAs substrates

In this work, the optical characteristics of monolithic passively mode-locked lasers (MLLs) fabricated from 1.24-&mgr;m InAs dots-in-a-Well (DWELL), 1.25-&mgr;m InGaAs single quantum well (SQW), and 1.55-&mgr;m GaInNAsSb SQW structures grown using elemental source molecular beam epitaxy (MBE) are reported. 5 GHz optical pulses with sub-picosecond RMS jitter, high pulse peak power (1W) and narrow pulse width (< 10 ps) were demonstrated in monolithic two-section InAs DWELL passive MLLs. With the 42% indium InGaAs SQW MLL, a record high-temperature performance for a monolithic passively mode-locked semiconductor laser is found. Compared with the typical operating range of the InAs DWELL devices (<60°C), the operation is in excess of 100 °C. The first 1.55-&mgr;m GaInNAsSb SQW MLL operates at a repetition rate of 5.8 GHz and has a 3-dB bandwidth of 170 kHz in the RF spectrum indicating respectable jitter.

[1]  M. Kobrinsky On-Chip Optical Interconnects 129 On-Chip Optical Interconnects , 2004 .

[2]  Wataru Chujo,et al.  Wavelength-band generation and transmission of 3.24-Tbit/s (81-channel WDM×40-Gbit/s) carrier-suppressed return-to-zero format by use of a single supercontinuum source for frequency standardization , 2002 .

[3]  V. Kovanis,et al.  1.3-μm Quantum Dot Monolithic Multi-Section Passively Mode-Locked Lasers , 2006, LEOS 2006 - 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society.

[4]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[5]  Andreas Stintz,et al.  Bistable operation of a two-section 1.3 /spl mu/m InAs quantum dot laser-absorption saturation and the quantum confined Stark effect , 2001 .

[6]  D.A.B. Miller,et al.  Rationale and challenges for optical interconnects to electronic chips , 2000, Proceedings of the IEEE.

[7]  Mark J. W. Rodwell,et al.  Subpicosecond laser timing stabilization , 1988 .

[8]  J.S. Harris,et al.  Low-threshold continuous-wave 1.5-/spl mu/m GaInNAsSb lasers grown on GaAs , 2004, IEEE Journal of Quantum Electronics.

[9]  Dieter Bimberg,et al.  Close-to-ideal device characteristics of high-power InGaAs/GaAs quantum dot lasers , 2001 .

[10]  Ian H. White,et al.  Long-wavelength monolithic mode-locked diode lasers , 2004 .

[11]  B. Jalali,et al.  Silicon Photonics , 2006, Journal of Lightwave Technology.

[12]  Richard V. Penty,et al.  35 GHz mode-locking of 1.3 μm quantum dot lasers , 2004 .

[13]  Jean-Claude Diels,et al.  Mode-locked laser as a combined radio-grequency and optical clock, stabilized to a reference cavity, and calibrated through coherent interaction with rubidium , 2003, Other Conferences.

[14]  Andreas Stintz,et al.  Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers , 2001 .

[15]  Andreas Stintz,et al.  Extremely low room-temperature threshold current density diode lasers using InAs dots in In/sub 0.15/Ga/sub 0.85/As quantum well , 1999 .

[16]  John E. Bowers,et al.  Short pulse generation using multisegment mode-locked semiconductor lasers , 1992 .

[17]  Andreas Stintz,et al.  Characterization of InAs quantum dots in strained InxGa1-xAs quantum wells , 2000 .

[18]  Brian H. Kolner,et al.  Electrooptic Sampling of GaAs Integrated Circuits , 1986, Topical Meeting on Ultrafast Phenomena.

[19]  David A. B. Miller,et al.  The benefits of ultrashort optical pulses in optically interconnected systems , 2003 .

[20]  G. Alphonse,et al.  168 channels x 6 GHz from a multiwavelength mode-locked semiconductor laser , 2003, IEEE Photonics Technology Letters.

[21]  Lei Zhang,et al.  Optical gain and absorption of quantum dots measured using an alternative segmented contact method , 2006, IEEE Journal of Quantum Electronics.