Differential Structure of Hippocampal CA1 Pyramidal Neurons in the Human and Mouse.

Pyramidal neurons are the most common cell type and are considered the main output neuron in most mammalian forebrain structures. In terms of function, differences in the structure of the dendrites of these neurons appear to be crucial in determining how neurons integrate information. To further shed light on the structure of the human pyramidal neurons we investigated the geometry of pyramidal cells in the human and mouse CA1 region-one of the most evolutionary conserved archicortical regions, which is critically involved in the formation, consolidation, and retrieval of memory. We aimed to assess to what extent neurons corresponding to a homologous region in different species have parallel morphologies. Over 100 intracellularly injected and 3D-reconstructed cells across both species revealed that dendritic and axonal morphologies of human cells are not only larger but also have structural differences, when compared to mouse. The results show that human CA1 pyramidal cells are not a stretched version of mouse CA1 cells. These results indicate that there are some morphological parameters of the pyramidal cells that are conserved, whereas others are species-specific.

[1]  Idan Segev,et al.  Perceptron Learning and Classification in a Modeled Cortical Pyramidal Cell , 2018, bioRxiv.

[2]  Trygve E Bakken,et al.  h-Channels Contribute to Divergent Intrinsic Membrane Properties of Supragranular Pyramidal Neurons in Human versus Mouse Cerebral Cortex , 2018, Neuron.

[3]  Yaoyao Li,et al.  A simplified morphological classification scheme for pyramidal cells in six layers of primary somatosensory cortex of juvenile rats , 2018, IBRO Reports.

[4]  Mark T. Harnett,et al.  Enhanced Dendritic Compartmentalization in Human Cortical Neurons , 2018, Cell.

[5]  Liset Menendez de la Prida,et al.  The hippocampus in depth: a sublayer-specific perspective of entorhinal–hippocampal function , 2018, Current Opinion in Neurobiology.

[6]  Michele Giugliano,et al.  Large and fast human pyramidal neurons associate with intelligence , 2018, bioRxiv.

[7]  A. Losonczy,et al.  CA1 pyramidal cell diversity enabling parallel information processing in the hippocampus , 2018, Nature Neuroscience.

[8]  Maarten H. P. Kole,et al.  The electrical significance of axon location diversity , 2018, Current Opinion in Neurobiology.

[9]  J. DeFelipe,et al.  Three-dimensional analysis of synapses in the transentorhinal cortex of Alzheimer’s disease patients , 2018, Acta Neuropathologica Communications.

[10]  Guy Eyal,et al.  Human Cortical Pyramidal Neurons: From Spines to Spikes via Models , 2018, bioRxiv.

[11]  Idan Segev,et al.  Comprehensive Morpho-Electrotonic Analysis Shows 2 Distinct Classes of L2 and L3 Pyramidal Neurons in Human Temporal Cortex , 2017, Cerebral cortex.

[12]  Jennifer I. Luebke,et al.  Pyramidal Neurons Are Not Generalizable Building Blocks of Cortical Networks , 2017, Front. Neuroanat..

[13]  Guy Eyal,et al.  Unique membrane properties and enhanced signal processing in human neocortical neurons , 2016, eLife.

[14]  Concha Bielza,et al.  Laminar Differences in Dendritic Structure of Pyramidal Neurons in the Juvenile Rat Somatosensory Cortex , 2016, Cerebral cortex.

[15]  Nelson Spruston,et al.  Dendritic integration: 60 years of progress , 2015, Nature Neuroscience.

[16]  Guy Eyal,et al.  Dendritic and Axonal Architecture of Individual Pyramidal Neurons across Layers of Adult Human Neocortex , 2015, Cerebral cortex.

[17]  D. Feldmeyer,et al.  Morphological and physiological characterization of pyramidal neuron subtypes in rat medial prefrontal cortex. , 2015, Cerebral cortex.

[18]  E. Lein,et al.  Functional organization of the hippocampal longitudinal axis , 2014, Nature Reviews Neuroscience.

[19]  Andreas Draguhn,et al.  Axon-Carrying Dendrites Convey Privileged Synaptic Input in Hippocampal Neurons , 2014, Neuron.

[20]  May-Britt Moser,et al.  Functional diversity along the transverse axis of hippocampal area CA1 , 2014, FEBS letters.

[21]  Attila Losonczy,et al.  Parvalbumin-Positive Basket Cells Differentiate among Hippocampal Pyramidal Cells , 2014, Neuron.

[22]  Michel A. Hofman,et al.  Evolution of the human brain: when bigger is better , 2014, Front. Neuroanat..

[23]  Organization and chemical neuroanatomy of the African elephant (Loxodonta africana) hippocampus , 2014, Brain Structure and Function.

[24]  P. Hof,et al.  Dendritic morphology of pyramidal neurons in the chimpanzee neocortex: regional specializations and comparison to humans. , 2013, Cerebral cortex.

[25]  Rafael Yuste,et al.  Age-based comparison of human dendritic spine structure using complete three-dimensional reconstructions. , 2013, Cerebral cortex.

[26]  N. Spruston,et al.  Hippocampal Pyramidal Neurons Comprise Two Distinct Cell Types that Are Countermodulated by Metabotropic Receptors , 2012, Neuron.

[27]  Patrick R Hof,et al.  Influence of Highly Distinctive Structural Properties on the Excitability of Pyramidal Neurons in Monkey Visual and Prefrontal Cortices , 2012, The Journal of Neuroscience.

[28]  D. Feldmeyer Excitatory neuronal connectivity in the barrel cortex , 2012, Front. Neuroanat..

[29]  Bartlett W. Mel,et al.  Distinguishing Linear vs. Non-Linear Integration in CA1 Radial Oblique Dendrites: It’s about Time , 2011, Front. Comput. Neurosci..

[30]  L. Slomianka,et al.  Hippocampal pyramidal cells: the reemergence of cortical lamination , 2011, Brain Structure and Function.

[31]  Javier DeFelipe,et al.  The Evolution of the Brain, the Human Nature of Cortical Circuits, and Intellectual Creativity , 2011, Front. Neuroanat..

[32]  R. Yuste Dendritic Spines , 2010 .

[33]  J. Changeux,et al.  Alterations of cortical pyramidal neurons in mice lacking high-affinity nicotinic receptors , 2010, Proceedings of the National Academy of Sciences.

[34]  A. van Ooyen,et al.  Impact of Dendritic Size and Dendritic Topology on Burst Firing in Pyramidal Cells , 2010, PLoS computational biology.

[35]  N. Spruston Pyramidal neurons: dendritic structure and synaptic integration , 2008, Nature Reviews Neuroscience.

[36]  N. Spruston,et al.  Distribution of bursting neurons in the CA1 region and the subiculum of the rat hippocampus , 2008, The Journal of comparative neurology.

[37]  Karel Svoboda,et al.  Locally dynamic synaptic learning rules in pyramidal neuron dendrites , 2007, Nature.

[38]  L. Swanson,et al.  Spatial organization of direct hippocampal field CA1 axonal projections to the rest of the cerebral cortex , 2007, Brain Research Reviews.

[39]  T. Bliss,et al.  The Hippocampus Book , 2006 .

[40]  Rafael Yuste,et al.  Dendritic size of pyramidal neurons differs among mouse cortical regions. , 2006, Cerebral cortex.

[41]  Thomas K. Berger,et al.  Heterogeneity in the pyramidal network of the medial prefrontal cortex , 2006, Nature Neuroscience.

[42]  M. London,et al.  Dendritic computation. , 2005, Annual review of neuroscience.

[43]  G. Paxinos,et al.  THE HUMAN NERVOUS SYSTEM , 1975 .

[44]  G. Elston Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function. , 2003, Cerebral cortex.

[45]  R. Yuste,et al.  Cortical area and species differences in dendritic spine morphology , 2002, Journal of neurocytology.

[46]  G. Elston,et al.  The Pyramidal Cell in Cognition: A Comparative Study in Human and Monkey , 2001, The Journal of Neuroscience.

[47]  J. Jacobs,et al.  Regional dendritic and spine variation in human cerebral cortex: a quantitative golgi study. , 2001, Cerebral cortex.

[48]  Bartlett W. Mel,et al.  Impact of Active Dendrites and Structural Plasticity on the Memory Capacity of Neural Tissue , 2001, Neuron.

[49]  N. Spruston,et al.  Diversity and dynamics of dendritic signaling. , 2000, Science.

[50]  I Segev,et al.  Untangling dendrites with quantitative models. , 2000, Science.

[51]  G. Elston,et al.  Variation in the spatial relationship between parvalbumin immunoreactive interneurones and pyramidal neurones in rat somatosensory cortex. , 1999, NeuroReport.

[52]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[53]  B. Jacobs,et al.  Life‐span dendritic and spine changes in areas 10 and 18 of human cortex: A quantitative golgi study , 1997, The Journal of comparative neurology.

[54]  Patricia S. Goldman-Rakic,et al.  Quantitative Three-Dimensional Analysis of the Catecholaminergic Innervation of Identified Neurons in the Macaque Prefrontal Cortex , 1997, The Journal of Neuroscience.

[55]  N. Bannister,et al.  Dendritic morphology of CA1 pyramidal neurones from the rat hippocampus: I. Branching patterns , 1995, The Journal of comparative neurology.

[56]  R. Malach Cortical columns as devices for maximizing neuronal diversity , 1994, Trends in Neurosciences.

[57]  J. B. Levitt,et al.  Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex. , 1993, Cerebral cortex.

[58]  J. DeFelipe,et al.  The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs , 1992, Progress in Neurobiology.

[59]  A. Larkman Dendritic morphology of pyramidal neurones of the visual cortex of the rat: I. Branching patterns , 1991, The Journal of comparative neurology.

[60]  T. Poggio,et al.  Retinal ganglion cells: a functional interpretation of dendritic morphology. , 1982, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[61]  C. Noback,et al.  The primate brain , 1970 .

[62]  W. Rall Branching dendritic trees and motoneuron membrane resistivity. , 1959, Experimental neurology.