Humoral and cellular response induced by a second booster of an inactivated SARS-CoV-2 vaccine in adults

A. Sette | D. Weiskopf | C. Asenjo | P. González | Weining Meng | A. Grifoni | Marian S. Navarrete | R. Soto-Rifo | N. Gálvez | J. Soto | A. Kalergis | S. Bueno | A. Sette | P. Muñoz-Venturelli | F. González | F. Melo-González | L. Bátiz | L. Duarte | A. Piña-Iturbe | B. M. Schultz | N. Uribe | J. V. González-Aramundiz | Alex Cabrera | F. Valiente-Echeverría | P. Vial | M. Ríos | C. Méndez | K. Abarca | M. Lasso | Inia Pérez | R. Fasce | A. Gaete-Argel | C. Iturriaga | M. S. Navarrete | M. Espinoza | E. Ramírez | N. Le Corre | L. Carrera | P. Guzmán | Alison M. Carrasco | J. Fernández | H. Peñaloza | Á. Rojas | Álvaro Rojas | Y. Vázquez | Andrea Schilling | D. Rivera-Pérez | M. Urzúa | D. Moreno-Tapia | P. Donato | P. Espinoza | Marcela González | M. Potín | J. Mora | G. Zeng | Mónica L. Acevedo | S. Monsalves | P. Astudillo | J. Pérez | Begoña López | Constanza S Méndez | P. Muñoz | C. Astudillo | Nicole Keller | P. A. Gonzalez | M. Ríos | P. Pereira-Sanchez | D. Leighton | C. Orellana | C. Covarrubias | A. Cabrera | S. Bustos | A. Rojas | J. Mora | M. Acevedo | W. Meng | CoronaVac03CL Study Group | Jorge Fernández | Francisca Aguirre | Sofía Aljaro | Y. Campisto | Mariela Cepeda | A. Cortes | Sofía López | Camila Astudillo | Francisca Urrutia | Cecilia Cornejo | S. Bustos | Werner Jensen | D. Pavez | Franco Vega | A. Martinez | Camila Sepúlveda | C. Pérez | J. Catalan | José Tomás González | C. López | M. Puente | N. Gutiérrez | F. Gutiérrez | Alma Muñoz | Amy Riviotta | Camila Bustamante | Nataly Martinez | Consuelo Covarrubias | D. Fuentes | Matías Masalleras | Patricia Pereira-Sánchez | Diane Leighton | Claudia Orellana | Constanza Del Río | Dinely Del Pino | N. Aguirre | Grecia Salinas | Acsa Salgado | Thomas Quinteros | M. Ortiz | Melan Peralta | Consuelo Zamanillo | Rocío Fernández | Tania Weil | Luz Opazo | Inés Estay | Miguel Cantillana | Karen Apablaza | Lorena Yates | M. Valdés | B. Hurtado | Veronique Venteneul | Constanza Astorga | Alejandra del Río | B. Vargas | Francisca Castro | Alejandra Acuña | J. Guzman | Marcela Arancibia | H. Romero | C. Bustamante | María Loreto Pérez | Viviana Silva | Bernardita Morice | M. Pérez | C. Pasten | M. F. Aguilera | Camila V. Molina | S. Arrieta | C. Ortiz | Macarena Escobar | Angela Pardo | M. Montes | Macarena Saldías | Julie N. Sanchez | Y. Calvo | Rosario Lemus | Muriel Suárez | Mercedes Armijo | Constance Marucich | A. Acosta | Xaviera Prado | Francisca Yáñez | Marisol Barroeta | Martha Iturrieta | J. Giraldo | M. Acuña | Ada Cascone | Raymundo Rojas | M. Contreras | Zoila Quizhpi | M. López | Vania Pizzeghello | S. Silva | Andrea Martínez | Cecilia Bustamante | Álvaro María Soledad Constanza Dinely Natalia Grecia Fran Rojas Navarrete Del Río Del Pino Aguirre S | José Tomás González | J. Perez | María Loreto Pérez | M.O. Perez | M. Saldías | Daniela Fuentes | Felipe Melo-González | Bárbara M. Schultz | Aracelly Gaete-Argel | Daniela Moreno-Tapia | Daniela Rivera-Pérez | Eugenio Ramírez | Alejandro Piña-Iturbe | M. Saldías | María S Navarrete | Cecilia Bustamante | María Loreto Pérez | M. Pérez | M. Aguilera | Camila Bustamante

[1]  J. Theiler,et al.  Substantial Neutralization Escape by SARS-CoV-2 Omicron Variants BQ.1.1 and XBB.1 , 2023, The New England journal of medicine.

[2]  K. To,et al.  Omicron sublineage recombinant XBB evades neutralising antibodies in recipients of BNT162b2 or CoronaVac vaccines , 2022, The Lancet Microbe.

[3]  Peng Wang,et al.  Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution , 2022, bioRxiv.

[4]  A. Sette,et al.  A Booster Dose of CoronaVac Increases Neutralizing Antibodies and T Cells that Recognize Delta and Omicron Variants of Concern , 2022, mBio.

[5]  P. González,et al.  Contribution of Two-Dose Vaccination Toward the Reduction of COVID-19 Cases, ICU Hospitalizations and Deaths in Chile Assessed Through Explanatory Generalized Additive Models for Location, Scale, and Shape , 2022, Frontiers in Public Health.

[6]  P. González,et al.  Safety and Non-Inferiority Evaluation of Two Immunization Schedules with an Inactivated SARS-CoV-2 Vaccine in Adults: A Randomized Clinical Trial , 2022, Vaccines.

[7]  P. Klenerman,et al.  Antibody escape of SARS-CoV-2 Omicron BA.4 and BA.5 from vaccine and BA.1 serum , 2022, Cell.

[8]  A. Sette,et al.  Humoral and cellular immune memory to four COVID-19 vaccines , 2022, Cell.

[9]  R. Arbel,et al.  Effectiveness of a second BNT162b2 booster vaccine against hospitalization and death from COVID-19 in adults aged over 60 years , 2022, Nature Medicine.

[10]  A. Kantele,et al.  Long-Lasting T Cell Responses in BNT162b2 COVID-19 mRNA Vaccinees and COVID-19 Convalescent Patients , 2022, Frontiers in Immunology.

[11]  M. Hernán,et al.  Fourth Dose of BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Setting , 2022, The New England journal of medicine.

[12]  P. Dormitzer,et al.  Safety and Efficacy of a Third Dose of BNT162b2 Covid-19 Vaccine , 2022, The New England journal of medicine.

[13]  D. Harats,et al.  Efficacy of a Fourth Dose of Covid-19 mRNA Vaccine against Omicron , 2022, The New England journal of medicine.

[14]  L. Poon,et al.  Strength and durability of antibody responses to BNT162b2 and CoronaVac , 2022, medRxiv.

[15]  C. Vial,et al.  Evaluation of the Immune Response Induced by CoronaVac 28-Day Schedule Vaccination in a Healthy Population Group , 2022, Frontiers in Immunology.

[16]  F. Osorio,et al.  Serological study of CoronaVac vaccine and booster doses in Chile: immunogenicity and persistence of anti-SARS-CoV-2 S antibodies , 2022, medRxiv.

[17]  S. Mallal,et al.  SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron , 2022, Cell.

[18]  P. Maes,et al.  Considerable escape of SARS-CoV-2 Omicron to antibody neutralization , 2021, Nature.

[19]  P. Maes,et al.  Considerable escape of SARS-CoV-2 Omicron to antibody neutralization , 2021, Nature.

[20]  A. Sette,et al.  Recognition of Variants of Concern by Antibodies and T Cells Induced by a SARS-CoV-2 Inactivated Vaccine , 2021, Frontiers in Immunology.

[21]  A. Azman,et al.  Global diversity of policy, coverage, and demand of COVID-19 vaccines: a descriptive study , 2021, BMC Medicine.

[22]  Y. Kreiss,et al.  Waning Immune Humoral Response to BNT162b2 Covid-19 Vaccine over 6 Months , 2021, The New England journal of medicine.

[23]  P. González,et al.  Immune Profile and Clinical Outcome of Breakthrough Cases After Vaccination With an Inactivated SARS-CoV-2 Vaccine , 2021, Frontiers in Immunology.

[24]  A. Sette,et al.  Safety and Immunogenicity of an Inactivated SARS-CoV-2 Vaccine in a Subgroup of Healthy Adults in Chile. , 2021, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[25]  E. Walsh,et al.  SARS-CoV-2 Neutralization with BNT162b2 Vaccine Dose 3 , 2021, The New England journal of medicine.

[26]  D. Montefiori,et al.  Safety and immunogenicity of SARS-CoV-2 variant mRNA vaccine boosters in healthy adults: an interim analysis , 2021, Nature Medicine.

[27]  J. Mascola,et al.  Durability of mRNA-1273 vaccine–induced antibodies against SARS-CoV-2 variants , 2021, Science.

[28]  S. Bennett,et al.  Relative Ratios of Human Seasonal Coronavirus Antibodies Predict the Efficiency of Cross-Neutralization of SARS-CoV-2 Spike Binding to ACE2 , 2021, medRxiv.

[29]  S. Valkenburg,et al.  Comparison of the immunogenicity of BNT162b2 and CoronaVac COVID‐19 vaccines in Hong Kong , 2021, medRxiv.

[30]  E. Undurraga,et al.  Effectiveness of an Inactivated SARS-CoV-2 Vaccine in Chile , 2021, The New England journal of medicine.

[31]  A. Yılmaz,et al.  Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey , 2021, The Lancet.

[32]  N. Sut,et al.  Antibody response to inactivated COVID-19 vaccine (CoronaVac) in immune-mediated diseases: a controlled study among hospital workers and elderly , 2021, Rheumatology International.

[33]  Changgui Li,et al.  Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy children and adolescents: a double-blind, randomised, controlled, phase 1/2 clinical trial , 2021, The Lancet Infectious Diseases.

[34]  A. Nagy,et al.  An overview of current COVID-19 vaccine platforms , 2021, Computational and Structural Biotechnology Journal.

[35]  D. Travisany,et al.  Insights into neutralizing antibody responses in individuals exposed to SARS-CoV-2 in Chile , 2021, Science Advances.

[36]  Bjoern Peters,et al.  Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection , 2021, Science.

[37]  Leo Swadling,et al.  Discordant neutralizing antibody and T cell responses in asymptomatic and mild SARS-CoV-2 infection , 2020, Science Immunology.

[38]  K. Chu,et al.  Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial , 2020, The Lancet Infectious Diseases.

[39]  J. Greenbaum,et al.  Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals , 2020, Cell.

[40]  Xiangxi Wang,et al.  Development of an inactivated vaccine candidate for SARS-CoV-2 , 2020, Science.

[41]  R. Scheuermann,et al.  A Sequence Homology and Bioinformatic Approach Can Predict Candidate Targets for Immune Responses to SARS-CoV-2 , 2020, Cell Host & Microbe.

[42]  D. Moher,et al.  CONSORT 2010 Statement: Updated Guidelines for Reporting Parallel Group Randomised Trials , 2010, PLoS medicine.

[43]  D. Moher,et al.  CONSORT 2010 Statement: updated guidelines for reporting parallel group randomised trials , 2010, BMC medicine.