Curvature tensors of singular spaces

Abstract A sequence of tensor-valued measures of certain singular spaces (e.g., subanalytic or convex sets) is constructed. The first three terms can be interpreted as scalar curvature, Einstein tensor and (modified) Riemann tensor. It is shown that these measures are independent of the ambient space, i.e., they are intrinsic. In contrast to this, there exists no intrinsic tensor-valued measure corresponding to the Ricci tensor.

[1]  H. Weyl On the Volume of Tubes , 1939 .

[2]  Robert Schrader,et al.  On the curvature of piecewise flat spaces , 1984 .

[3]  I. Holopainen Riemannian Geometry , 1927, Nature.

[4]  H. Fédérer Geometric Measure Theory , 1969 .

[5]  S. Alesker Description of Continuous Isometry Covariant Valuations on Convex Sets , 1999 .

[6]  A. Bernig Scalar curvature of definable Alexandrov spaces , 2001 .

[7]  David Cohen-Steiner,et al.  Restricted delaunay triangulations and normal cycle , 2003, SCG '03.

[8]  T. J. Willmore,et al.  TANGENT AND COTANGENT BUNDLES , 1975 .

[9]  J. Fu,et al.  Curvature Measures of Subanalytic Sets , 1994 .

[10]  A. Bernig Variation of Curvatures of Subanalytic Spaces and Schläfli-Type Formulas , 2003 .

[11]  Continuous rotation invariant valuations on convex sets , 1999, math/9905204.

[12]  H. Hamm ON STRATIFIED MORSE THEORY , 1999 .

[13]  J. Fu,et al.  Convergence of curvatures in secant approximations , 1993 .

[14]  M. Zähle Approximation and characterization of generalised Lipschitz-Killing curvatures , 1990 .

[15]  Jeff Cheeger,et al.  On the structure of spaces with Ricci curvature bounded below. II , 2000 .

[16]  Andreas Bernig,et al.  Courbures intrinsèques dans les catégories analytico-géométriques , 2003 .

[17]  L. Bröcker,et al.  Integral Geometry of Tame Sets , 2000 .

[18]  A. Bernig Scalar curvature of definable CAT-spaces , 2003 .

[19]  M. Zähle,et al.  General Normal Cycles and Lipschitz Manifolds of Bounded Curvature , 2005 .