Time Series Data Mining Methods : A Review

Today, real world time series data sets can take a size up to a trillion observations and even more. Data miners’ task is it to detect new information that is hidden in this massive amount of data. While well known techniques for data mining in cross sections have been developed, time series data mining methods are not as sophisticated and established yet. Large time series bring along problems like very high dimensionality and up to today, researchers haven’t agreed on best practices in this regard. This review gives an overview of the challenges of large time series and the proposed problem solving approaches from time series data mining community. We illustrate the most important techniques with Google trends data. Moreover, we review current research directions and point out open research questions. Heutzutage sind die Möglichkeiten der Datensammlung und -Speicherung unvorstellbar weitreichend und somit können Zeitreihendatensätze mittlerweile bis zu einer Billion Beobachtungen enthalten. Die Aufgabe von Data Mining ist es, versteckte Informationen aus dieser Datenschwemme herauszufiltern. Während es für Querschnittsdaten viele verschiedene und sehr gut entwickelte Techniken gibt, hinken die Zeitreihen Data Mining Methoden weit hinterher. Die Forschungspraxis hat sich in diesem Bereich noch nicht auf standardisierte Vorgehensweisen geeinigt. Dieser Literaturüberblick stellt zunächst die typischen Probleme, die Zeitreihen mit sich bringen, dar und systematisiert daraufhin die von der Forschungsgemeinde vorgeschlagenen Lösungsansätze hierfür. Die wichtigsten Ansätze werden anhand von Google Trends Daten illustriert. Darüber hinaus werfen wir einen Blick auf aktuelle Forschungsströme und zeigen noch offene Forschungsfragen auf.

[1]  Jonathan D. Cryer,et al.  Time Series Analysis , 1986 .

[2]  Terrence J. Sejnowski,et al.  Unsupervised Learning , 2018, Encyclopedia of GIS.

[3]  Tak-Chung Fu,et al.  Pattern discovery from stock time series using self-organizing maps , 2016 .

[4]  Joan Serrà,et al.  Particle swarm optimization for time series motif discovery , 2015, Knowl. Based Syst..

[5]  Xiao Liu,et al.  Time-Series Pattern Based Effective Noise Generation for Privacy Protection on Cloud , 2015, IEEE Transactions on Computers.

[6]  Ahmed Kattan,et al.  Time-series event-based prediction: An unsupervised learning framework based on genetic programming , 2015, Inf. Sci..

[7]  Laurenz Wiskott,et al.  Predictable Feature Analysis , 2015, 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA).

[8]  Dimitris Kugiumtzis,et al.  A prediction scheme using perceptually important points and dynamic time warping , 2014, Expert Syst. Appl..

[9]  Eamonn J. Keogh,et al.  Rare Time Series Motif Discovery from Unbounded Streams , 2014, Proc. VLDB Endow..

[10]  Lizhe Wang,et al.  Sparse representation for remote sensing images of long time sequences , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[11]  Peter N. C. Mohr,et al.  Risk Patterns and Correlated Brain Activities. Multidimensional Statistical Analysis of fMRI Data in Economic Decision Making Study , 2013, Psychometrika.

[12]  Marina Vannucci,et al.  A spatio-temporal nonparametric Bayesian variable selection model of fMRI data for clustering correlated time courses , 2014, NeuroImage.

[13]  Hailin Li,et al.  Asynchronism-based principal component analysis for time series data mining , 2014, Expert Syst. Appl..

[14]  Jai E. Jung,et al.  Privacy-Preserving Discovery of Topic-Based Events from Social Sensor Signals: An Experimental Study on Twitter , 2014, TheScientificWorldJournal.

[15]  Witold Pedrycz,et al.  Anomaly Detection and Characterization in Spatial Time Series Data: A Cluster-Centric Approach , 2014, IEEE Transactions on Fuzzy Systems.

[16]  Han Liu,et al.  Challenges of Big Data Analysis. , 2013, National science review.

[17]  Xiaodong Liu,et al.  Dynamic programming approach for segmentation of multivariate time series , 2014, Stochastic Environmental Research and Risk Assessment.

[18]  Chotirat Ratanamahatana,et al.  Efficient Proper Length Time Series Motif Discovery , 2013, 2013 IEEE 13th International Conference on Data Mining.

[19]  Faicel Chamroukhi,et al.  Joint segmentation of multivariate time series with hidden process regression for human activity recognition , 2013, Neurocomputing.

[20]  Milos Hauskrecht,et al.  A temporal pattern mining approach for classifying electronic health record data , 2013, ACM Trans. Intell. Syst. Technol..

[21]  Georg M. Goerg Forecastable Component Analysis , 2013, ICML.

[22]  Zoran Nikoloski,et al.  Network-Based Segmentation of Biological Multivariate Time Series , 2013, PloS one.

[23]  Hong Hu,et al.  Anomaly Detection Algorithm Based on Pattern Density in Time Series , 2013 .

[24]  Piotr Fryzlewicz,et al.  Multiscale and multilevel technique for consistent segmentation of nonstationary time series , 2016, 1611.09727.

[25]  Milos Hauskrecht,et al.  Mining recent temporal patterns for event detection in multivariate time series data , 2012, KDD.

[26]  Eamonn J. Keogh,et al.  Searching and Mining Trillions of Time Series Subsequences under Dynamic Time Warping , 2012, KDD.

[27]  János Abonyi,et al.  On-line detection of homogeneous operation ranges by dynamic principal component analysis based time-series segmentation , 2012 .

[28]  Gerhard Thonhauser,et al.  Multivariate Time Series Classification by Combining Trend-Based and Value-Based Approximations , 2012, ICCSA.

[29]  Mrinalini Shah,et al.  Fuzzy based trend mapping and forecasting for time series data , 2012, Expert Syst. Appl..

[30]  V. Niennattrakul,et al.  Parameter-free motif discovery for time series data , 2012, 2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology.

[31]  Dejun Mu,et al.  A Fast Approach to K-means Clustering for Time Series Based on Symbolic Representation , 2012 .

[32]  Manish Marwah,et al.  Visual exploration of frequent patterns in multivariate time series , 2012, Inf. Vis..

[33]  Eamonn J. Keogh,et al.  Experimental comparison of representation methods and distance measures for time series data , 2010, Data Mining and Knowledge Discovery.

[34]  Tim Oates,et al.  Visualizing Variable-Length Time Series Motifs , 2012, SDM.

[35]  D. Thakore,et al.  High Dimensional Data Mining in Time Series by Reducing Dimensionality and Numerosity , 2012 .

[36]  Eamonn J. Keogh,et al.  Time Series Epenthesis: Clustering Time Series Streams Requires Ignoring Some Data , 2011, 2011 IEEE 11th International Conference on Data Mining.

[37]  Milos Hauskrecht,et al.  A Pattern Mining Approach for Classifying Multivariate Temporal Data , 2011, 2011 IEEE International Conference on Bioinformatics and Biomedicine.

[38]  Nikolaus Hautsch,et al.  Econometrics of Financial High-Frequency Data , 2011 .

[39]  Jignesh M. Patel,et al.  Efficient and Accurate Discovery of Patterns in Sequence Data Sets , 2011, IEEE Transactions on Knowledge and Data Engineering.

[40]  Tak-Chung Fu,et al.  A review on time series data mining , 2011, Eng. Appl. Artif. Intell..

[41]  Amir F. Atiya,et al.  An Empirical Comparison of Machine Learning Models for Time Series Forecasting , 2010 .

[42]  Dimitrios Gunopulos,et al.  Mining Time Series Data , 2005, Data Mining and Knowledge Discovery Handbook.

[43]  Claudia Plant,et al.  Interaction-Based Clustering of Multivariate Time Series , 2009, 2009 Ninth IEEE International Conference on Data Mining.

[44]  Eamonn J. Keogh,et al.  Finding Time Series Motifs in Disk-Resident Data , 2009, 2009 Ninth IEEE International Conference on Data Mining.

[45]  Anthony J. T. Lee,et al.  Mining closed patterns in multi-sequence time-series databases , 2009, Data Knowl. Eng..

[46]  Yasuo Kuniyoshi,et al.  Causality quantification and its applications: structuring and modeling of multivariate time series , 2009, KDD.

[47]  Eamonn J. Keogh,et al.  Time series shapelets: a new primitive for data mining , 2009, KDD.

[48]  Vicenç Torra,et al.  Towards the evaluation of time series protection methods , 2009, Inf. Sci..

[49]  Milos Hauskrecht,et al.  Multivariate Time Series Classification with Temporal Abstractions , 2009, FLAIRS.

[50]  Pei-Chann Chang,et al.  Evolving and clustering fuzzy decision tree for financial time series data forecasting , 2009, Expert Syst. Appl..

[51]  Pierre-François Marteau,et al.  Time Warp Edit Distance with Stiffness Adjustment for Time Series Matching , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  Nuno Constantino Castro,et al.  Time Series Data Mining , 2009, Encyclopedia of Database Systems.

[53]  Vasudha Bhatnagar,et al.  Algorithms for Association Rule Mining , 2009, Encyclopedia of Artificial Intelligence.

[54]  Eamonn J. Keogh,et al.  Exact Discovery of Time Series Motifs , 2009, SDM.

[55]  Anne M. Denton,et al.  Pattern-based time-series subsequence clustering using radial distribution functions , 2009, Knowledge and Information Systems.

[56]  Giancarlo Valente,et al.  Multivariate analysis of fMRI time series: classification and regression of brain responses using machine learning. , 2008, Magnetic resonance imaging.

[57]  Eamonn J. Keogh,et al.  iSAX: indexing and mining terabyte sized time series , 2008, KDD.

[58]  Hui Ding,et al.  Querying and mining of time series data: experimental comparison of representations and distance measures , 2008, Proc. VLDB Endow..

[59]  Huirong Fu,et al.  On Privacy in Time Series Data Mining , 2008, PAKDD.

[60]  Xiang Lian,et al.  Pattern Matching over Cloaked Time Series , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[61]  Hans-Peter Kriegel,et al.  Similarity Search in Multimedia Time Series Data Using Amplitude-Level Features , 2008, MMM.

[62]  Liu Xiao-ying Fast Subsequence Matching in Time-series Database , 2008 .

[63]  Zehong Yang,et al.  Intelligent stock trading system by turning point confirming and probabilistic reasoning , 2008, Expert Syst. Appl..

[64]  Eamonn J. Keogh,et al.  Disk aware discord discovery: finding unusual time series in terabyte sized datasets , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[65]  Liang Wang,et al.  Structure-Based Statistical Features and Multivariate Time Series Clustering , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[66]  Irfan A. Essa,et al.  Detecting Subdimensional Motifs: An Efficient Algorithm for Generalized Multivariate Pattern Discovery , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[67]  Huaiqing Wang,et al.  A New Segmentation Algorithm to Stock Time Series Based on PIP Approach , 2007, 2007 International Conference on Wireless Communications, Networking and Mobile Computing.

[68]  Philip Chan,et al.  Toward accurate dynamic time warping in linear time and space , 2007, Intell. Data Anal..

[69]  Fabian Mörchen,et al.  Efficient mining of understandable patterns from multivariate interval time series , 2007, Data Mining and Knowledge Discovery.

[70]  Amaury Lendasse,et al.  Methodology for long-term prediction of time series , 2007, Neurocomputing.

[71]  Yunhao Liu,et al.  Indexable PLA for Efficient Similarity Search , 2007, VLDB.

[72]  De Wu,et al.  A Piecewise Linear Representation Method of Time Series Based on Feature Points , 2007, KES.

[73]  Eamonn J. Keogh,et al.  Detecting time series motifs under uniform scaling , 2007, KDD '07.

[74]  Zbigniew Michalewicz,et al.  Time Series Forecasting for Dynamic Environments: The DyFor Genetic Program Model , 2007, IEEE Transactions on Evolutionary Computation.

[75]  Irfan A. Essa,et al.  Discovering Multivariate Motifs using Subsequence Density Estimation and Greedy Mixture Learning , 2007, AAAI.

[76]  Jignesh M. Patel,et al.  An efficient and accurate method for evaluating time series similarity , 2007, SIGMOD '07.

[77]  Raj Bhatnagar,et al.  Discovery of Temporal Dependencies between Frequent Patterns in Multivariate Time Series , 2007, 2007 IEEE Symposium on Computational Intelligence and Data Mining.

[78]  Anthony K. H. Tung,et al.  SpADe: On Shape-based Pattern Detection in Streaming Time Series , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[79]  Graham Cormode,et al.  Conquering the Divide: Continuous Clustering of Distributed Data Streams , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[80]  Yannis Theodoridis,et al.  Index-based Most Similar Trajectory Search , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[81]  M Congedo,et al.  A review of classification algorithms for EEG-based brain–computer interfaces , 2007, Journal of neural engineering.

[82]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[83]  Guilherme De A. Barreto,et al.  Time Series Prediction with the Self-Organizing Map: A Review , 2007, Perspectives of Neural-Symbolic Integration.

[84]  Li Wei,et al.  SAXually Explicit Images: Finding Unusual Shapes , 2006, Sixth International Conference on Data Mining (ICDM'06).

[85]  Eamonn J. Keogh,et al.  Finding the most unusual time series subsequence: algorithms and applications , 2006, Knowledge and Information Systems.

[86]  Shehzad Khalid,et al.  Classifying spatiotemporal object trajectories using unsupervised learning in the coefficient feature space , 2006, Multimedia Systems.

[87]  Sean M. Polyn,et al.  Beyond mind-reading: multi-voxel pattern analysis of fMRI data , 2006, Trends in Cognitive Sciences.

[88]  Li Wei,et al.  Semi-supervised time series classification , 2006, KDD '06.

[89]  Philip S. Yu,et al.  Optimal multi-scale patterns in time series streams , 2006, SIGMOD Conference.

[90]  Li Wei,et al.  Fast time series classification using numerosity reduction , 2006, ICML.

[91]  Jar-Long Wang,et al.  Stock market trading rule discovery using two-layer bias decision tree , 2006, Expert Syst. Appl..

[92]  Alan Liu,et al.  Pattern discovery of fuzzy time series for financial prediction , 2006, IEEE Transactions on Knowledge and Data Engineering.

[93]  Hans-Peter Kriegel,et al.  Similarity Search on Time Series Based on Threshold Queries , 2006, EDBT.

[94]  Yanchang Zhao,et al.  Generalized dimension-reduction framework for recent-biased time series analysis , 2006, IEEE Transactions on Knowledge and Data Engineering.

[95]  Eamonn J. Keogh,et al.  Scaling and time warping in time series querying , 2005, The VLDB Journal.

[96]  Tak-Chung Fu,et al.  Financial Time Series Segmentation based on Specialized Binary Tree Representation , 2006, International Conference on Data Mining.

[97]  Tak-Chung Fu,et al.  Mining of Stock Data: Intra- and Inter-Stock Pattern Associative Classification , 2006, DMIN.

[98]  Pavel Berkhin,et al.  A Survey of Clustering Data Mining Techniques , 2006, Grouping Multidimensional Data.

[99]  Xiaozhe Wang,et al.  Characteristic-Based Clustering for Time Series Data , 2006, Data Mining and Knowledge Discovery.

[100]  Gareth J. Janacek,et al.  A Bit Level Representation for Time Series Data Mining with Shape Based Similarity , 2006, Data Mining and Knowledge Discovery.

[101]  Philip S. Yu,et al.  On Periodicity Detection and Structural Periodic Similarity , 2005, SDM.

[102]  Philip K. Chan,et al.  Modeling multiple time series for anomaly detection , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[103]  Anne M. Denton Kernel-density-based clustering of time series subsequences using a continuous random-walk noise model , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[104]  Jason R. Chen Making subsequence time series clustering meaningful , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[105]  Cyrus Shahabi,et al.  On the stationarity of multivariate time series for correlation-based data analysis , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[106]  T. Warren Liao,et al.  Clustering of time series data - a survey , 2005, Pattern Recognit..

[107]  Md. Rafiul Hassan,et al.  Stock market forecasting using hidden Markov model: a new approach , 2005, 5th International Conference on Intelligent Systems Design and Applications (ISDA'05).

[108]  Jimeng Sun,et al.  Streaming Pattern Discovery in Multiple Time-Series , 2005, VLDB.

[109]  Fabian Mörchen,et al.  Optimizing time series discretization for knowledge discovery , 2005, KDD '05.

[110]  Walid G. Aref,et al.  Periodicity detection in time series databases , 2005, IEEE Transactions on Knowledge and Data Engineering.

[111]  Li Wei,et al.  Assumption-Free Anomaly Detection in Time Series , 2005, SSDBM.

[112]  Cyrus Shahabi,et al.  A multilevel distance-based index structure for multivariate time series , 2005, 12th International Symposium on Temporal Representation and Reasoning (TIME'05).

[113]  Lei Chen,et al.  Robust and fast similarity search for moving object trajectories , 2005, SIGMOD '05.

[114]  Christos Faloutsos,et al.  FTW: fast similarity search under the time warping distance , 2005, PODS.

[115]  Shonali Krishnaswamy,et al.  Mining data streams: a review , 2005, SGMD.

[116]  Eamonn J. Keogh,et al.  A Novel Bit Level Time Series Representation with Implication of Similarity Search and Clustering , 2005, PAKDD.

[117]  Gareth J. Janacek,et al.  A Likelihood Ratio Distance Measure for the Similarity Between the Fourier Transform of Time Series , 2005, PAKDD.

[118]  Eamonn J. Keogh,et al.  Visualizing and Discovering Non-Trivial Patterns in Large Time Series Databases , 2005, Inf. Vis..

[119]  Qiang Wang,et al.  A multiresolution symbolic representation of time series , 2005, 21st International Conference on Data Engineering (ICDE'05).

[120]  M. Szymański The Optical Gravitational Lensing Experiment. Internet Access to the OGLE Photometry Data Set: OGLE-II BVI maps and I-band data , 2005, astro-ph/0602018.

[121]  Kuniaki Uehara,et al.  Discovery of Time-Series Motif from Multi-Dimensional Data Based on MDL Principle , 2005, Machine Learning.

[122]  Ilaria Bartolini,et al.  WARP: accurate retrieval of shapes using phase of Fourier descriptors and time warping distance , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[123]  Nitin Kumar,et al.  Time-series Bitmaps: a Practical Visualization Tool for Working with Large Time Series Databases , 2005, SDM.

[124]  James Nga-Kwok Liu,et al.  Chart Patterns Recognition and Forecast Using Wavelet and Radial Basis Function Network , 2004, KES.

[125]  Sylvia Kaufmann,et al.  Model-Based Clustering of Multiple Time Series , 2004 .

[126]  Lei Chen,et al.  On The Marriage of Lp-norms and Edit Distance , 2004, VLDB.

[127]  Eamonn J. Keogh,et al.  Towards parameter-free data mining , 2004, KDD.

[128]  Dit-Yan Yeung,et al.  Time series clustering with ARMA mixtures , 2004, Pattern Recognit..

[129]  Jieping Ye,et al.  Generalized Low Rank Approximations of Matrices , 2004, Machine Learning.

[130]  Dimitrios Gunopulos,et al.  Identifying similarities, periodicities and bursts for online search queries , 2004, SIGMOD '04.

[131]  Zhihua Wang,et al.  Fast algorithms for time series with applications to finance, physics, music, biology, and other suspects , 2004, SIGMOD '04.

[132]  Nick Roussopoulos,et al.  Compressing historical information in sensor networks , 2004, SIGMOD '04.

[133]  Richard J. Povinelli,et al.  Time series classification using Gaussian mixture models of reconstructed phase spaces , 2004, IEEE Transactions on Knowledge and Data Engineering.

[134]  Z. Jane Wang,et al.  Joint segmentation and classification of time series using class-specific features , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[135]  Ambuj K. Singh,et al.  Optimizing similarity search for arbitrary length time series queries , 2004, IEEE Transactions on Knowledge and Data Engineering.

[136]  Juan José Rodríguez Diez,et al.  Interval and dynamic time warping-based decision trees , 2004, SAC '04.

[137]  Dimitrios Gunopulos,et al.  Iterative Incremental Clustering of Time Series , 2004, EDBT.

[138]  Ben Shneiderman,et al.  Dynamic Query Tools for Time Series Data Sets: Timebox Widgets for Interactive Exploration , 2004, Inf. Vis..

[139]  Walid G. Aref,et al.  Incremental, online, and merge mining of partial periodic patterns in time-series databases , 2004, IEEE Transactions on Knowledge and Data Engineering.

[140]  Reda Alhajj,et al.  Discovering all frequent trends in time series , 2004 .

[141]  Eamonn J. Keogh,et al.  Clustering of time-series subsequences is meaningless: implications for previous and future research , 2004, Knowledge and Information Systems.

[142]  Eamonn J. Keogh,et al.  On the Need for Time Series Data Mining Benchmarks: A Survey and Empirical Demonstration , 2002, Data Mining and Knowledge Discovery.

[143]  Eamonn J. Keogh,et al.  Exact indexing of dynamic time warping , 2002, Knowledge and Information Systems.

[144]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[145]  Dimitrios Gunopulos,et al.  Indexing Multidimensional Time-Series , 2004, The VLDB Journal.

[146]  Gregory Piatetsky-Shapiro,et al.  Advances in Knowledge Discovery and Data Mining , 2004, Lecture Notes in Computer Science.

[147]  Eamonn J. Keogh,et al.  Everything you know about Dynamic Time Warping is Wrong , 2004 .

[148]  A. Udalski The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey , 2003, astro-ph/0401123.

[149]  Khalid Sayood,et al.  A new sequence distance measure for phylogenetic tree construction , 2003, Bioinform..

[150]  Frank Klawonn,et al.  Fuzzy Clustering of Short Time-Series and Unevenly Distributed Sampling Points , 2003, IDA.

[151]  Eamonn J. Keogh,et al.  Probabilistic discovery of time series motifs , 2003, KDD '03.

[152]  Junshui Ma,et al.  Online novelty detection on temporal sequences , 2003, KDD '03.

[153]  Dimitrios Gunopulos,et al.  Indexing multi-dimensional time-series with support for multiple distance measures , 2003, KDD '03.

[154]  Frédéric H. Pighin,et al.  Unsupervised learning for speech motion editing , 2003, SCA '03.

[155]  Mário A. T. Figueiredo,et al.  Similarity-Based Clustering of Sequences Using Hidden Markov Models , 2003, MLDM.

[156]  Eamonn J. Keogh,et al.  A symbolic representation of time series, with implications for streaming algorithms , 2003, DMKD '03.

[157]  Lukasz Golab,et al.  Issues in data stream management , 2003, SGMD.

[158]  Dimitrios Gunopulos,et al.  A Wavelet-Based Anytime Algorithm for K-Means Clustering of Time Series , 2003 .

[159]  Eamonn J. Keogh,et al.  Mining motifs in massive time series databases , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[160]  James P. Crutchfield,et al.  An Algorithm for Pattern Discovery in Time Series , 2002, ArXiv.

[161]  Ben Shneiderman,et al.  An Augmented Visual Query Mechanism for Finding Patterns in Time Series Data , 2002, FQAS.

[162]  Lloyd Allison,et al.  Change-Point Estimation Using New Minimum Message Length Approximations , 2002, PRICAI.

[163]  Renée J. Miller,et al.  Similarity search over time-series data using wavelets , 2002, Proceedings 18th International Conference on Data Engineering.

[164]  Manuele Bicego,et al.  A Hidden Markov Model-Based Approach to Sequential Data Clustering , 2002, SSPR/SPR.

[165]  Russell L. Purvis,et al.  Stock market trading rule discovery using technical charting heuristics , 2002, Expert Syst. Appl..

[166]  Ambuj K. Singh,et al.  Similarity searching for multi-attribute sequences , 2002, Proceedings 14th International Conference on Scientific and Statistical Database Management.

[167]  Eamonn J. Keogh,et al.  Finding surprising patterns in a time series database in linear time and space , 2002, KDD.

[168]  John F. Roddick,et al.  A Survey of Temporal Knowledge Discovery Paradigms and Methods , 2002, IEEE Trans. Knowl. Data Eng..

[169]  Eamonn J. Keogh,et al.  Locally adaptive dimensionality reduction for indexing large time series databases , 2001, SIGMOD '01.

[170]  Dale E. Seborg,et al.  Clustering of multivariate time-series data , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[171]  Kilian Stoffel,et al.  Classification Rules + Time = Temporal Rules , 2002, International Conference on Computational Science.

[172]  Nikola K. Kasabov,et al.  DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction , 2002, IEEE Trans. Fuzzy Syst..

[173]  Dimitrios Gunopulos,et al.  Discovering similar multidimensional trajectories , 2002, Proceedings 18th International Conference on Data Engineering.

[174]  Eamonn J. Keogh,et al.  Segmenting Time Series: A Survey and Novel Approach , 2002 .

[175]  M. Ohsaki A Rule Discovery Support System for Sequential Medical Data,-In the Case Study of a Chronic Hepatitis Dataset- , 2002 .

[176]  Eamonn J. Keogh,et al.  Iterative Deepening Dynamic Time Warping for Time Series , 2002, SDM.

[177]  Jessica Lin,et al.  Finding Motifs in Time Series , 2002, KDD 2002.

[178]  Yehuda Lindell,et al.  Privacy Preserving Data Mining , 2002, Journal of Cryptology.

[179]  Nikola K. Kasabov,et al.  Evolving fuzzy neural networks for supervised/unsupervised online knowledge-based learning , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[180]  Eamonn J. Keogh,et al.  An online algorithm for segmenting time series , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[181]  Heikki Mannila,et al.  Time series segmentation for context recognition in mobile devices , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[182]  Konstantinos Kalpakis,et al.  Distance measures for effective clustering of ARIMA time-series , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[183]  Marc Alexa,et al.  Visualizing time-series on spirals , 2001, IEEE Symposium on Information Visualization, 2001. INFOVIS 2001..

[184]  Pierre Geurts,et al.  Pattern Extraction for Time Series Classification , 2001, PKDD.

[185]  Eamonn J. Keogh,et al.  Ensemble-index: a new approach to indexing large databases , 2001, KDD '01.

[186]  Eamonn J. Keogh,et al.  Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases , 2001, Knowledge and Information Systems.

[187]  Abraham Kandel,et al.  Knowledge discovery in time series databases , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[188]  Tak-chung Fu,et al.  Flexible time series pattern matching based on perceptually important points , 2001 .

[189]  Bin Li,et al.  Using fuzzy neural network clustering algorithm in the symbolization of time series , 2000, IEEE APCCAS 2000. 2000 IEEE Asia-Pacific Conference on Circuits and Systems. Electronic Communication Systems. (Cat. No.00EX394).

[190]  Piotr Indyk,et al.  Identifying Representative Trends in Massive Time Series Data Sets Using Sketches , 2000, VLDB.

[191]  Christos Faloutsos,et al.  Fast Time Sequence Indexing for Arbitrary Lp Norms , 2000, VLDB.

[192]  James T. Kwok,et al.  Rival penalized competitive learning for model-based sequence clustering , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[193]  Padhraic Smyth,et al.  Deformable Markov model templates for time-series pattern matching , 2000, KDD '00.

[194]  Eamonn J. Keogh,et al.  Scaling up dynamic time warping for datamining applications , 2000, KDD '00.

[195]  Cyrus Shahabi,et al.  TSA-tree: a wavelet-based approach to improve the efficiency of multi-level surprise and trend queries on time-series data , 2000, Proceedings. 12th International Conference on Scientific and Statistica Database Management.

[196]  Ulrich Güntzer,et al.  Algorithms for association rule mining — a general survey and comparison , 2000, SKDD.

[197]  Eamonn J. Keogh,et al.  A Simple Dimensionality Reduction Technique for Fast Similarity Search in Large Time Series Databases , 2000, PAKDD.

[198]  Xin Chen,et al.  A compression algorithm for DNA sequences and its applications in genome comparison , 2000, RECOMB '00.

[199]  Gustavo Rossi,et al.  An approach to discovering temporal association rules , 2000, SAC '00.

[200]  Deok-Hwan Kim,et al.  Similarity search for multidimensional data sequences , 2000, Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073).

[201]  Joshua M. Stuart,et al.  MICROARRAY EXPERIMENTS : APPLICATION TO SPORULATION TIME SERIES , 1999 .

[202]  Kilian Stoffel,et al.  RULE EXTRACTION FROM TIME SERIES DATABASES USING CLASSIFICATION TREES 1 , 2000 .

[203]  W. Chu,et al.  Fast retrieval of similar subsequences in long sequence databases , 1999, Proceedings 1999 Workshop on Knowledge and Data Engineering Exchange (KDEX'99) (Cat. No.PR00453).

[204]  Jarke J. van Wijk,et al.  Cluster and Calendar Based Visualization of Time Series Data , 1999, INFOVIS.

[205]  Zbigniew R. Struzik,et al.  The Haar Wavelet Transform in the Time Series Similarity Paradigm , 1999, PKDD.

[206]  Eamonn J. Keogh,et al.  Relevance feedback retrieval of time series data , 1999, SIGIR '99.

[207]  Padhraic Smyth,et al.  Trajectory clustering with mixtures of regression models , 1999, KDD '99.

[208]  Jaideep Srivastava,et al.  Event detection from time series data , 1999, KDD '99.

[209]  Man Hon Wong,et al.  Fast time-series searching with scaling and shifting , 1999, PODS '99.

[210]  Ada Wai-Chee Fu,et al.  Efficient time series matching by wavelets , 1999, Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337).

[211]  Jiawei Han,et al.  Efficient mining of partial periodic patterns in time series database , 1999, Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337).

[212]  L. K. Hansen,et al.  On Clustering fMRI Time Series , 1999, NeuroImage.

[213]  Franklin Allen,et al.  Using genetic algorithms to find technical trading rules , 1999 .

[214]  Alfred Ultsch,et al.  Data Mining and Knowledge Discovery with Emergent Self-Organizing Feature Maps for Multivariate Time Series , 1999 .

[215]  Richard J. Povinelli,et al.  DATA MINING OF MULTIPLE NONSTATIONARY TIME SERIES , 1999 .

[216]  Laura Firoiu,et al.  Clustering Time Series with Hidden Markov Models and Dynamic Time Warping , 1999 .

[217]  José Carlos Príncipe,et al.  Competitive principal component analysis for locally stationary time series , 1998, IEEE Trans. Signal Process..

[218]  Ian T. Nabney,et al.  Analysing time series structure with hidden Markov models , 1998, Neural Networks for Signal Processing VIII. Proceedings of the 1998 IEEE Signal Processing Society Workshop (Cat. No.98TH8378).

[219]  Jiawei Han,et al.  Mining Segment-Wise Periodic Patterns in Time-Related Databases , 1998, KDD.

[220]  Eamonn J. Keogh,et al.  An Enhanced Representation of Time Series Which Allows Fast and Accurate Classification, Clustering and Relevance Feedback , 1998, KDD.

[221]  Heikki Mannila,et al.  Rule Discovery from Time Series , 1998, KDD.

[222]  C. S. Wallace,et al.  Minimum Message Length Segmentation , 1998, PAKDD.

[223]  Christos Faloutsos,et al.  Efficient retrieval of similar time sequences under time warping , 1998, Proceedings 14th International Conference on Data Engineering.

[224]  Hongjun Lu,et al.  Stock movement prediction and N-dimensional inter-transaction association rules , 1998, SIGMOD 1998.

[225]  R. Shanmugam Introduction to Time Series and Forecasting , 1997 .

[226]  Dimitrios Gunopulos,et al.  Finding Similar Time Series , 1997, PKDD.

[227]  Christos Faloutsos,et al.  Efficiently supporting ad hoc queries in large datasets of time sequences , 1997, SIGMOD '97.

[228]  Alberto O. Mendelzon,et al.  Similarity-based queries for time series data , 1997, SIGMOD '97.

[229]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[230]  Robert P. W. Duin,et al.  Novelty Detection Using Self-Organizing Maps , 1997, ICONIP.

[231]  Jonathan J. Oliver,et al.  Bayesian Approaches to Segmenting A Simple Time Series , 1997 .

[232]  G. F. Bryant,et al.  A new algorithm for segmenting data from time series , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[233]  William Remus,et al.  Neural Network Models for Time Series Forecasts , 1996 .

[234]  José Carlos Príncipe,et al.  Spatio-temporal self-organizing feature maps , 1996, Proceedings of International Conference on Neural Networks (ICNN'96).

[235]  José Carlos Príncipe,et al.  A neighborhood map of competing one step predictors for piecewise segmentation and identification of time series , 1996, Proceedings of International Conference on Neural Networks (ICNN'96).

[236]  Hagit Shatkay,et al.  Approximate queries and representations for large data sequences , 1996, Proceedings of the Twelfth International Conference on Data Engineering.

[237]  Dina Q. Goldin,et al.  On Similarity Queries for Time-Series Data: Constraint Specification and Implementation , 1995, CP.

[238]  Kyuseok Shim,et al.  Fast Similarity Search in the Presence of Noise, Scaling, and Translation in Time-Series Databases , 1995, VLDB.

[239]  Amara Lynn Graps,et al.  An introduction to wavelets , 1995 .

[240]  Donald J. Berndt,et al.  Using Dynamic Time Warping to Find Patterns in Time Series , 1994, KDD Workshop.

[241]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[242]  Christos Faloutsos,et al.  Efficient Similarity Search In Sequence Databases , 1993, FODO.

[243]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[244]  G. McLachlan Discriminant Analysis and Statistical Pattern Recognition , 1992 .

[245]  Marcin Kubiak,et al.  The Optical Gravitational Lensing Experiment , 1992 .

[246]  P. Brockwell,et al.  Time Series: Theory and Methods , 2013 .

[247]  Teuvo Kohonen,et al.  The self-organizing map , 1990, Neurocomputing.

[248]  Hans-Peter Kriegel,et al.  The R*-tree: an efficient and robust access method for points and rectangles , 1990, SIGMOD '90.

[249]  Ruzena Bajcsy,et al.  Segmentation versus object representation—are they separable? , 1989 .

[250]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[251]  A. Guttmma,et al.  R-trees: a dynamic index structure for spatial searching , 1984 .

[252]  Ronald Fagin,et al.  Extendible hashing—a fast access method for dynamic files , 1979, ACM Trans. Database Syst..

[253]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[254]  S. Chiba,et al.  Dynamic programming algorithm optimization for spoken word recognition , 1978 .

[255]  F. Itakura,et al.  Minimum prediction residual principle applied to speech recognition , 1975 .