A simple computer implementation of membrane wrinkle behaviour via a projection technique

A simple computer implementation of membrane wrinkle behaviour is presented within the classical elastic plane stress constitutive model. In the present method, a projection technique is utilized for modelling of the wrinkle mechanisms, in which the total strains in wrinkled membranes are decomposed into elastic and zero-strain energy parts, and a projection matrix that extracts the elastic parts from the total strains is derived. The resulting modified elasticity matrix that represents the stress–strain relations in wrinkled membranes is thus obtained as product of the classical elasticity matrix and the projection matrix. The modified elasticity matrix is straightforward to implement within the context of the finite element method. Numerical examples are presented to demonstrate the accuracy and effectiveness of the proposed method. Copyright © 2007 John Wiley & Sons, Ltd.

[1]  Bingen Yang,et al.  New Numerical Method for Two-Dimensional Partially Wrinkled Membranes , 2003 .

[2]  J. W. Leonard,et al.  Finite element analysis of membrane wrinkling , 2001 .

[3]  Cwj Cees Oomens,et al.  The Wrinkling of Thin Membranes: Part I—Theory , 1987 .

[4]  Thomas R. Canfield,et al.  Wrinkling in finite plane-stress theory , 1981 .

[5]  Christopher Jenkins,et al.  Dynamic Wrinkling of Viscoelastic Membranes , 1993 .

[6]  Fujikake Masahisa,et al.  Analysis of fabric tension structures , 1989 .

[7]  E. M. Haseganu,et al.  Analysis of partly wrinkled membranes by the method of dynamic relaxation , 1994 .

[8]  A. Pipkin The Relaxed Energy Density for Isotropic Elastic Membranes , 1986 .

[9]  Bernhard A. Schrefler,et al.  A geometrically nonlinear finite element analysis of wrinkled membrane surfaces by a no‐compression material model , 1988 .

[10]  Yasuyuki Miyazaki,et al.  Wrinkle/slack model and finite element dynamics of membrane , 2006 .

[11]  M. Mikulas Behavior of a Flat Stretched Membrane Wrinkled by the Rotation of an Attached Hub , 1964 .

[12]  Cwj Cees Oomens,et al.  The Wrinkling of Thin Membranes: Part II—Numerical Analysis , 1987 .

[13]  F. Muttin,et al.  A finite element for wrinkled curved elastic membranes, and its application to sails , 1996 .

[14]  J. Hornig,et al.  Wrinkling of nonlinear membranes , 2002 .

[15]  W. Schur,et al.  Large deflection analysis of pneumatic envelopes using a penalty parameter modified material model , 2001 .

[16]  K. Bathe Finite Element Procedures , 1995 .

[17]  Seokwoo Kang,et al.  Finite element analysis of wrinkling membranes , 1997 .

[18]  Byung Man Kwak,et al.  Complementarity problem formulation for the wrinkled membrane and numerical implementation , 1992 .

[19]  J. Hedgepeth,et al.  ANALYSIS OF PARTLY WRINKLED MEMBRANES , 1961 .

[20]  David J. Steigmann,et al.  FINITE DEFORMATIONS OF WRINKLED MEMBRANES , 1989 .

[21]  D. Roddeman,et al.  Finite‐element analysis of wrinkling membranes , 1991 .

[22]  A. Pipkin Relaxed energy densities for large deformations of membranes , 1993 .

[23]  Marcelo Epstein,et al.  Anisotropic membrane wrinkling: theory and analysis , 2001 .

[24]  Frank Baginski,et al.  Modeling the Shapes of Constrained Partially Inflated High-Altitude Balloons , 2001 .

[25]  Bingen Yang,et al.  The modeling and numerical analysis of wrinkled membranes , 2003 .

[26]  John M. Hedgepeth,et al.  Finite element analysis of partly wrinkled membranes , 1985 .

[27]  M. Natori,et al.  Efficient Modification Scheme of Stress-Strain Tensor for Wrinkled Membranes , 2005 .