Common-mode rejection in Martin-Puplett spectrometers for astronomical observations at millimeter wavelengths.

The Martin-Puplett interferometer (MPI) is a differential Fourier transform spectrometer that measures the difference between spectral brightness at two input ports. This unique feature makes the MPI an optimal zero instrument, able to detect small brightness gradients embedded in a large common background. In this paper, we experimentally investigate the common-mode rejection achievable in the MPI at millimeter wavelengths, and discuss the use of the instrument to measure the spectrum of cosmic microwave background anisotropy.

[1]  James J. Bock,et al.  A broadband millimeter-wave spectrometer Z-spec: sensitivity and ULIRGs , 2008, Astronomical Telescopes + Instrumentation.

[2]  Andrey Smirnov,et al.  Space mission Millimetron for terahertz astronomy , 2012, Other Conferences.

[3]  D. J. Fixsen,et al.  Calibrator Design for the COBE Far Infrared Absolute Spectrophotometer (FIRAS) , 1998, astro-ph/9810373.

[4]  E. L. Wright,et al.  MORPHOLOGY OF THE INTERSTELLAR COOLING LINES DETECTED BY COBE , 1993, astro-ph/9311032.

[5]  D. H. Martin,et al.  Polarised interferometric spectrometry for the millimetre and submillimetre spectrum , 1970 .

[6]  J. Mather,et al.  Submillimeter and millimeter wave characterization of absorbing materials. , 1985, Applied optics.

[7]  Luca Lamagna,et al.  Low-resolution spectroscopy of the Sunyaev-Zel’dovich effect and estimates of cluster parameters , 2011, 1111.4588.

[8]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[9]  Y. Zeldovich,et al.  The interaction of matter and radiation in a hot-model universe , 1969 .

[10]  Enzo Pascale,et al.  OLIMPO: A few arcmin resolution survey of the sky at mm and sub-mm wavelengths , 2003 .

[11]  P. Bernardis,et al.  On the emissivity of wire-grid polarizers for astronomical observations at mm-wavelengths , 2012, 1212.3969.

[12]  A. Cimatti,et al.  The far-infrared/radio correlation as probed by Herschel , 2010, 1005.1072.

[13]  Y. Jing,et al.  The kinetic SZ tomography with spectroscopic redshift surveys , 2010, 1004.1301.

[14]  Mario Zannoni,et al.  Efficient differential Fourier-transform spectrometer for precision Sunyaev-Zel’dovich effect measurements , 2014, 1402.4091.

[15]  D. Spergel,et al.  Rayleigh Scattering and Microwave Background Fluctuations , 2001, astro-ph/0103149.

[16]  B. Carli,et al.  Signal doubling in the Martin-Puplett interferometer , 1981 .

[17]  H. Nguyen,et al.  HerMES: COSMIC INFRARED BACKGROUND ANISOTROPIES AND THE CLUSTERING OF DUSTY STAR-FORMING GALAXIES , 2012, 1208.5049.

[18]  Matthew Joseph Griffin,et al.  The Herschel-SPIRE instrument and its capabilities for extragalactic astronomy , 2007 .

[19]  Dale J. Fixsen,et al.  Design for the COBE far-infrared absolute spectrophotometer , 1993, Optics & Photonics.

[20]  A. Lange,et al.  Emissivity measurements of reflective surfaces at near-millimeter wavelengths. , 1995, Applied optics.

[21]  M. Halpern,et al.  Far infrared transmission of dielectrics at cryogenic and room temperatures: glass, Fluorogold, Eccosorb, Stycast, and various plastics. , 1986, Applied optics.

[22]  J. Chluba,et al.  Radiative transfer effects during primordial helium recombination , 2011, 1110.0247.

[23]  D. J. Fixsen,et al.  Design and calibration of a cryogenic blackbody calibrator at centimeter wavelengths , 2004 .

[24]  Samuel Harvey Moseley,et al.  A Preliminary measurement of the Cosmic Microwave Background spectrum by the Cosmic Background Explorer (COBE) satellite , 1990 .

[25]  V. V. Hristov,et al.  High-Latitude Galactic Dust Emission in the BOOMERANG Maps , 2001 .

[26]  Antony Lewis,et al.  Rayleigh scattering: blue sky thinking for future CMB observations , 2013, 1307.8148.