Ultrametric and Generalized Ultrametric in Computational Logic and in Data Analysis

Following a review of metric, ultrametric and generalized ultrametric, we review their application in data analysis. We show how they allow us to explore both geometry and topology of information, starting with measured data. Some themes are then developed based on the use of metric, ultrametric and generalized ultrametric in logic. In particular we study approximation chains in an ultrametric or generalized ultrametric context. Our aim in this work is to extend the scope of data analysis by facilitating reasoning based on the data analysis; and to show how quantitative and qualitative data analysis can be incorporated into logic programming.

[1]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[2]  Pascal Hitzler,et al.  Generalized Ultrametrics, Domains and an Application to Computational Logic , 1998, Irish Mathematical Society Bulletin.

[3]  Fionn Murtagh,et al.  On Ultrametric Algorithmic Information , 2007, Comput. J..

[4]  Paulo Ribenboim,et al.  Ultrametric Spaces and Logic Programming , 2000, J. Log. Program..

[5]  Abbas Edalat,et al.  Domains for Computation in Mathematics, Physics and Exact Real Arithmetic , 1997, Bulletin of Symbolic Logic.

[6]  W. H. Schikhof Ultrametric Calculus: An Introduction to p-Adic Analysis , 1984 .

[7]  Richard Foote An algebraic approach to multiresolution analysis , 2005 .

[8]  H. Reiter Classical Harmonic Analysis and Locally Compact Groups , 1968 .

[9]  Pascal Hitzler,et al.  The Fixed-Point Theorems of Priess-Crampe and Ribenboim in Logic Programming , 2002 .

[10]  Fionn Murtagh,et al.  The Haar Wavelet Transform of a Dendrogram , 2006, J. Classif..

[11]  Robert L. Benedetto Examples of wavelets for local fields , 2003 .

[12]  A. C. M. van Rooij,et al.  Non-Archimedean functional analysis , 1978 .

[13]  G.,et al.  A Wreath Product Group Approach to Signal and Image Processing : Part I | Multiresolution AnalysisR , 1999 .

[14]  Dennis M. Healy,et al.  A wreath product group approach to signal and image processing .II. Convolution, correlation, and applications , 2000, IEEE Trans. Signal Process..

[15]  Melvin F. Janowitz,et al.  Ordinal and Relational Clustering , 2010, Interdisciplinary Mathematical Sciences.

[16]  J. Benedetto,et al.  A wavelet theory for local fields and related groups , 2003, math/0312036.

[17]  Dennis M. Healy,et al.  A wreath product group approach to signal and image processing .I. Multiresolution analysis , 2000, IEEE Trans. Signal Process..

[18]  Bernhard Ganter,et al.  Formal Concept Analysis: Mathematical Foundations , 1998 .

[19]  Fionn Murtagh,et al.  Comments on 'Parallel Algorithms for Hierarchical Clustering and Cluster Validity' , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Dennis M. Healy,et al.  A Wreath Product Group Approach to Signal and Image Processing: Part II --- Convolution, Correlation , 1998 .

[21]  Fionn Murtagh,et al.  Multidimensional clustering algorithms , 1985 .

[22]  F. William Lawvere,et al.  Metric spaces, generalized logic, and closed categories , 1973 .

[23]  C. J. van Rijsbergen,et al.  The geometry of information retrieval , 2004 .

[24]  Paulo Ribenboim,et al.  Logic programming and ultrametric spaces , 1999 .

[25]  A. Khrennikov Information Dynamics in Cognitive, Psychological, Social, and Anomalous Phenomena , 2004 .

[26]  Fionn Murtagh,et al.  A Survey of Recent Advances in Hierarchical Clustering Algorithms , 1983, Comput. J..

[27]  Fionn Murtagh,et al.  On Ultrametricity, Data Coding, and Computation , 2004, J. Classif..

[28]  Ljiljana Gajic ON ULTRAMETRIC SPACE , 2001 .

[29]  M. Janowitz Cluster Analysis Based on Posets , 2007 .

[30]  Markus Krötzsch,et al.  Generalized ultrametric spaces in quantitative domain theory , 2006, Theor. Comput. Sci..

[31]  F. Murtagh Symmetry in data mining and analysis: A unifying view based on hierarchy , 2008, 0805.2744.

[32]  S. C. Johnson Hierarchical clustering schemes , 1967, Psychometrika.

[33]  Pascal Hitzler,et al.  Generalized Distance Functions in the Theory of Computation , 2010, Comput. J..

[34]  M. F. Janowitz,et al.  An Order Theoretic Model for Cluster Analysis , 1978 .