Chatter detection in turning using persistent homology

Abstract This paper describes a new approach for ascertaining the stability of stochastic dynamical systems in their parameter space by examining their time series using topological data analysis (TDA). We illustrate the approach using a nonlinear delayed model that describes the tool oscillations due to self-excited vibrations in turning. Each time series is generated using the Euler-Maruyama method and a corresponding point cloud is obtained using the Takens embedding. The point cloud can then be analyzed using a tool from TDA known as persistent homology. The results of this study show that the described approach can be used for analyzing datasets of delay dynamical systems generated both from numerical simulation and experimental data. The contributions of this paper include presenting for the first time a topological approach for investigating the stability of a class of nonlinear stochastic delay equations, and introducing a new application of TDA to machining processes.

[1]  Herbert Edelsbrunner,et al.  Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[2]  James C. Robinson A topological delay embedding theorem for infinite-dimensional dynamical systems , 2005 .

[3]  B. Klamecki Enhancement of the low-level components of milling vibration signals by stochastic resonance , 2004 .

[4]  Andrew J. Blumberg,et al.  Robust Statistics, Hypothesis Testing, and Confidence Intervals for Persistent Homology on Metric Measure Spaces , 2012, Found. Comput. Math..

[5]  Xuerong Mao,et al.  Exponential stability of equidistant Euler-Maruyama approximations of stochastic differential delay equations , 2007 .

[6]  Gábor Stépán,et al.  Modelling nonlinear regenerative effects in metal cutting , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[7]  Primoz Skraba,et al.  Topological Analysis of Recurrent Systems , 2012, NIPS 2012.

[8]  Rachel Kuske,et al.  Multiple-scales approximation of a coherence resonance route to chatter , 2006, Computing in Science & Engineering.

[9]  Hamid Krim,et al.  Persistent Homology of Delay Embeddings and its Application to Wheeze Detection , 2014, IEEE Signal Processing Letters.

[10]  Peter Bubenik,et al.  Statistical topological data analysis using persistence landscapes , 2012, J. Mach. Learn. Res..

[11]  D. Donoho,et al.  Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[12]  G. Carlsson,et al.  Topology of viral evolution , 2013, Proceedings of the National Academy of Sciences.

[13]  Michael Shapiro,et al.  Failure filtrations for fenced sensor networks , 2012, Int. J. Robotics Res..

[14]  Steven B. Haase,et al.  Design and analysis of large-scale biological rhythm studies: a comparison of algorithms for detecting periodic signals in biological data , 2013, Bioinform..

[15]  C. Yuan,et al.  Approximate solutions of stochastic differential delay equations with Markovian switching , 2006 .

[16]  Rachel Kuske,et al.  Noise-Sensitivity in Machine Tool Vibrations , 2006, Int. J. Bifurc. Chaos.

[17]  Joshua Garland,et al.  Iterated function system models in data analysis: detection and separation. , 2011, Chaos.

[18]  Igor Grabec,et al.  STOCHASTIC DYNAMICS OF METAL CUTTING: BIFURCATION PHENOMENA IN TURNING , 2002 .

[19]  Afra Zomorodian,et al.  Computing Persistent Homology , 2005, Discret. Comput. Geom..

[20]  Pablo G. Cámara,et al.  Inference of Ancestral Recombination Graphs through Topological Data Analysis , 2015, PLoS Comput. Biol..

[21]  R. Coifman,et al.  Non-linear independent component analysis with diffusion maps , 2008 .

[22]  Jiaowan Luo A note on exponential stability in p th mean of solutions of stochastic delay differential equations , 2007 .

[23]  R. Ghrist Barcodes: The persistent topology of data , 2007 .

[24]  Shivakumar Raman,et al.  A review of: “Manufacturing Processes and Equipment” J. TLUSTY Prentice Hall, Upper Saddle River, NJ ISBN 0-201-49865-0 , 2002 .

[25]  F. Moon,et al.  Nonlinear models for complex dynamics in cutting materials , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[26]  Gábor Stépán,et al.  Criticality of Hopf bifurcation in state-dependent delay model of turning processes , 2008 .

[27]  Afra Zomorodian,et al.  The Theory of Multidimensional Persistence , 2007, SCG '07.

[28]  Evelyn Buckwar,et al.  Multi-Step Maruyama Methods for Stochastic Delay Differential Equations , 2007 .

[29]  F. Takens Detecting strange attractors in turbulence , 1981 .

[30]  Jian-Qiao Sun,et al.  A semi-discretization method for delayed stochastic systems , 2005 .

[31]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[32]  Vin de Silva,et al.  Persistent Cohomology and Circular Coordinates , 2009, SCG '09.

[33]  I. Jolliffe Principal Component Analysis , 2002 .

[34]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[35]  Guillem Quintana,et al.  Chatter in machining processes: A review , 2011 .

[36]  Kenneth A. Brown,et al.  Nonlinear Statistics of Human Speech Data , 2009, Int. J. Bifurc. Chaos.

[37]  Vin de Silva,et al.  Coverage in sensor networks via persistent homology , 2007 .

[38]  B. Nadler,et al.  Diffusion maps, spectral clustering and reaction coordinates of dynamical systems , 2005, math/0503445.

[39]  Patrick J. F. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 2003 .

[40]  Eric A. Butcher,et al.  On the Chebyshev spectral continuous time approximation for constant and periodic delay differential equations , 2011 .

[41]  P J Beek,et al.  Stationary solutions of linear stochastic delay differential equations: applications to biological systems. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Danica Kragic,et al.  Cohomological learning of periodic motion , 2015, Applicable Algebra in Engineering, Communication and Computing.

[43]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[44]  Salah-Eldin A. Mohammed,et al.  Discrete-time approximations of stochastic delay equations: The Milstein scheme , 2004 .

[45]  Tianhai Tian,et al.  Oscillatory Regulation of Hes1: Discrete Stochastic Delay Modelling and Simulation , 2006, PLoS Comput. Biol..

[46]  Zachary Alexander,et al.  A topology-based approach for nonlinear time series with applications in computer performance analysis , 2012 .

[47]  K. Burrage,et al.  Stochastic delay differential equations for genetic regulatory networks , 2007 .

[48]  David S. Broomhead,et al.  Delay embedding in the presence of dynamical noise , 1998 .

[49]  Hongyuan Zha,et al.  Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment , 2002, ArXiv.

[50]  A. Longtin,et al.  Small delay approximation of stochastic delay differential equations , 1999 .

[51]  Mikael Vejdemo-Johansson,et al.  Automatic recognition and tagging of topologically different regimes in dynamical systems , 2013, ArXiv.

[52]  Gunnar E. Carlsson,et al.  Zigzag Persistence , 2008, Found. Comput. Math..

[53]  Brittany Terese Fasy,et al.  Local persistent homology based distance between maps , 2014, SIGSPATIAL/GIS.

[54]  Desmond J. Higham,et al.  An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations , 2001, SIAM Rev..

[55]  H. Zha,et al.  Principal manifolds and nonlinear dimensionality reduction via tangent space alignment , 2004, SIAM J. Sci. Comput..

[56]  X. Mao,et al.  Numerical solutions of stochastic differential delay equations under local Lipschitz condition , 2003 .

[57]  Sayan Mukherjee,et al.  Fréchet Means for Distributions of Persistence Diagrams , 2012, Discrete & Computational Geometry.

[58]  H. Abarbanel,et al.  Determining embedding dimension for phase-space reconstruction using a geometrical construction. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[59]  H. Abdi,et al.  Principal component analysis , 2010 .

[60]  Evelyn Buckwar,et al.  Introduction to the numerical analysis of stochastic delay differential equations , 2000 .

[61]  S. Mukherjee,et al.  Probability measures on the space of persistence diagrams , 2011 .

[62]  Alpay Yilmaz,et al.  Machine-Tool Chatter Suppression by Multi-Level Random Spindle Speed Variation , 1999, Manufacturing Science and Engineering.

[63]  Zichen Chen,et al.  On-line chatter detection and identification based on wavelet and support vector machine , 2010 .

[64]  Firas A. Khasawneh,et al.  A spectral element approach for the stability of delay systems , 2011 .

[65]  Yusuf Altintas,et al.  Analytical Prediction of Stability Lobes in Milling , 1995 .

[66]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[67]  David S. Broomhead,et al.  Delay Embeddings for Forced Systems. II. Stochastic Forcing , 2003, J. Nonlinear Sci..

[68]  Sivaraman Balakrishnan,et al.  Confidence sets for persistence diagrams , 2013, The Annals of Statistics.

[69]  Yuri Dabaghian,et al.  A Topological Paradigm for Hippocampal Spatial Map Formation Using Persistent Homology , 2012, PLoS Comput. Biol..

[70]  Jose A. Perea,et al.  SW1PerS: Sliding windows and 1-persistence scoring; discovering periodicity in gene expression time series data , 2015, BMC Bioinformatics.

[71]  Adam Watkins,et al.  Feature-aided multiple hypothesis tracking using topological and statistical behavior classifiers , 2015, Defense + Security Symposium.

[72]  Vin de Silva,et al.  On the Local Behavior of Spaces of Natural Images , 2007, International Journal of Computer Vision.

[73]  R. Ho Algebraic Topology , 2022 .

[74]  M. Mackey,et al.  Solution moment stability in stochastic differential delay equations. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[75]  Konstantin Mischaikow,et al.  Topological data analysis of contagion maps for examining spreading processes on networks , 2015, Nature communications.

[76]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .

[77]  Gábor Stépán,et al.  Updated semi‐discretization method for periodic delay‐differential equations with discrete delay , 2004 .

[78]  T. McKelvey,et al.  Non-parametric frequency response estimation using a local rational model , 2012 .

[79]  I. Grabec,et al.  Qualitative and Quantitative Analysis of Stochastic Processes Based on Measured Data, II: Applications to Experimental Data , 2002 .

[80]  David Cohen-Steiner,et al.  Lipschitz Functions Have Lp-Stable Persistence , 2010, Found. Comput. Math..

[81]  Jose A. Perea,et al.  Sliding Windows and Persistence: An Application of Topological Methods to Signal Analysis , 2013, Found. Comput. Math..

[82]  Gunnar E. Carlsson,et al.  Topological pattern recognition for point cloud data* , 2014, Acta Numerica.

[83]  Spectral Analysis in Frequency and Time Domain for Noisy Time Series , 2004 .

[84]  Evelyn Buckwar,et al.  Exponential stability in p -th mean of solutions, and of convergent Euler-type solutions, of stochastic delay differential equations , 2005 .

[85]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2007, Discret. Comput. Geom..