Combined Zircon, Molybdenite, and Cassiterite Geochronology and Cassiterite Geochemistry of the Kuntabin Tin-Tungsten Deposit in Myanmar

The Kuntabin Sn-W deposit, located in southern Myanmar, is characterized by abundant greisen-type and quartz vein-type cassiterite and wolframite mineralization. We have conducted multiple geochronological methods and isotope and trace element analyses to reveal the age and evolution of the Kuntabin magmatichydrothermal system. Zircon U-Pb dating of the two-mica granite yielded a weighted mean 206Pb/238U age of 90.1 ± 0.7 Ma. Cassiterite U-Pb dating provided a lower intercept age of 88.1 ± 1.9 Ma in the Tera-Wasserburg U-Pb concordia diagram. Molybdenite Re-Os dating returned a weighted mean model age of 87.7 ± 0.5 Ma and an isochron age of 88.7 ± 2.7 Ma. These ages indicate a genetic relationship between granite and Sn-W mineralization in the Kuntabin deposit and record the earliest magmatism and Sn-W mineralization in the Sibumasu and Tengchong terranes related to subduction of the Neo-Tethys oceanic slab. Three generations of cassiterite have been identified with distinctive cathodoluminescence textures and trace element patterns, indicating the episodic input of ore-forming fluids and distinctive changes in the physical-chemical conditions of the Kuntabin magmatichydrothermal system. Sudden changes of fluid pressure, temperature, pH, etc., may have facilitated the deposition of Sn and W. Rhenium contents of molybdenite from the Kuntabin deposit and many other Sn-W deposits in Myanmar are characteristically low compared to porphyry Cu-Mo-(Au) deposits worldwide. In combination with zircon Hf isotope signatures, we infer that granites associated with Sn-W deposits in Myanmar were predominantly derived by melting of ancient continental crust and contain minimal mantle contribution. Subduction of the Neo-Tethys oceanic slab from west of the West Burma terrane reached beneath the Sibumasu terrane and led to magmatism and Sn-W mineralization at ~90 Ma when the Kuntabin deposit was formed. The Paleoproterozoic Sibumasu crust was activated during the subduction-related magmatism to form predominantly crust derived melts. After a high degree of fractional crystallization and fluid exsolution, physical-chemical changes of the hydrothermal fluid resulted in Sn and W precipitation to form the Kuntabin Sn-W deposit.

[1]  Xiaoyong Yang,et al.  Review on the Tectonic Terranes Associated with Metallogenic Zones in Southeast Asia , 2019, Journal of Earth Science.

[2]  A. Kemp,et al.  Controls on cassiterite (SnO2) crystallization: Evidence from cathodoluminescence, trace-element chemistry, and geochronology at the Gejiu Tin District , 2019, American Mineralogist.

[3]  X. Tan,et al.  Two parallel magmatic belts with contrasting isotopic characteristics from southern Tibet to Myanmar: zircon U–Pb and Hf isotopic constraints , 2018, Journal of the Geological Society.

[4]  W. Fan,et al.  Mesozoic-Cenozoic tectonic evolution and metallogeny in Myanmar: Evidence from zircon/cassiterite U–Pb and molybdenite Re–Os geochronology , 2018, Ore Geology Reviews.

[5]  J. Foden,et al.  Probing into Thailand’s basement: New insights from U–Pb geochronology, Sr, Sm–Nd, Pb and Lu–Hf isotopic systems from granitoids , 2018, Lithos.

[6]  M. Searle,et al.  The crustal architecture of Myanmar imaged through zircon U-Pb, Lu-Hf and O isotopes: Tectonic and metallogenic implications , 2018, Gondwana Research.

[7]  H. Zhong,et al.  Magmatic-hydrothermal evolution of the Yuanzhuding porphyry Cu-Mo deposit, South China: Insights from mica and quartz geochemistry , 2018, Ore Geology Reviews.

[8]  A. Boyce,et al.  Stable isotope and geochronological study of the Mawchi Sn-W deposit, Myanmar: Implications for timing of mineralization and ore genesis , 2018 .

[9]  Rongqing Zhang,et al.  Cassiterite U-Pb geochronology constrains magmatic-hydrothermal evolution in complex evolved granite systems: The classic Erzgebirge tin province (Saxony and Bohemia) , 2017 .

[10]  A. Mitchell Geological Belts, Plate Boundaries, and Mineral Deposits in Myanmar , 2017 .

[11]  Peter A. Cawood,et al.  Closure of the East Paleotethyan Ocean and amalgamation of the Eastern Cimmerian and Southeast Asia continental fragments , 2017, Earth-Science Reviews.

[12]  V. Daorerk,et al.  Petrochemistry and zircon U-Pb geochronology of granitic rocks in the Wang Nam Khiao area, Nakhon Ratchasima, Thailand: Implications for petrogenesis and tectonic setting , 2017 .

[13]  M. Barton,et al.  Grain-scale and deposit-scale heterogeneity of Re distribution in molybdenite at the Bagdad porphyry Cu-Mo deposit, Arizona , 2017 .

[14]  B. Rusk,et al.  Physical and Chemical Evolution of the Dabaoshan Porphyry Mo Deposit, South China: Insights from Fluid Inclusions, Cathodoluminescence, and Trace Elements in Quartz , 2017 .

[15]  Shou‐ting Zhang,et al.  Geology, geochemistry and genesis of the Eocene Lailishan Sn deposit in the Sanjiang region, SW China , 2017 .

[16]  M. Whitehouse,et al.  Contrasting Granite Metallogeny through the Zircon Record: A Case Study from Myanmar , 2017, Scientific Reports.

[17]  Rongqing Zhang,et al.  Combined zircon and cassiterite U-Pb dating of the Piaotang granite-related tungsten-tin deposit, southern Jiangxi tungsten district, China , 2017 .

[18]  Peter A. Cawood,et al.  The tectonic and metallogenic framework of Myanmar: A Tethyan mineral system , 2016 .

[19]  S. Guo,et al.  Petrology and geochemistry of mantle peridotites from the Kalaymyo and Myitkyina ophiolites (Myanmar): Implications for tectonic settings , 2016 .

[20]  M. Searle,et al.  The closure of Palaeo-Tethys in Eastern Myanmar and Northern Thailand: New insights from zircon U–Pb and Hf isotope data , 2016 .

[21]  Dapeng Li,et al.  Origin and evolution of the Tengchong block, southeastern margin of the Tibetan Plateau: Zircon U–Pb and Lu–Hf isotopic evidence from the (meta-) sedimentary rocks and intrusions , 2016 .

[22]  G. Dong,et al.  Linking the Tengchong Terrane in SW Yunnan with the Lhasa Terrane in southern Tibet through magmatic correlation , 2016 .

[23]  S. Guo,et al.  Tethyan suturing in Southeast Asia: Zircon U-Pb and Hf-O isotopic constraints from Myanmar ophiolites , 2016 .

[24]  Li-quan Wang,et al.  Evolution of the Bangong-Nujiang Tethyan ocean: Insights from the geochronology and geochemistry of mafic rocks within ophiolites , 2016 .

[25]  A. Trench,et al.  Tin mining in Myanmar: Production and potential , 2015 .

[26]  M. Searle,et al.  Petrogenesis of Malaysian granitoids in the Southeast Asian tin belt: Part 2. U-Pb zircon geochronology and tectonic model , 2015 .

[27]  M. Searle,et al.  Neo-Tethyan magmatism and metallogeny in Myanmar - An Andean analogue? , 2015 .

[28]  M. Reed,et al.  Time Scales of Porphyry Cu Deposit Formation: Insights from Titanium Diffusion in Quartz , 2015 .

[29]  T. Seifert,et al.  Indium in cassiterite and ores of tin deposits , 2015 .

[30]  M. Searle,et al.  Petrogenesis of Malaysian granitoids in the Southeast Asian tin belt: Part 1. Geochemical and Sr-Nd isotopic characteristics , 2015 .

[31]  P. King,et al.  Porphyry copper deposit formation by sub-volcanic sulphur dioxide flux and chemisorption , 2015 .

[32]  Z. Hou,et al.  Geodynamics and Metallogeny of the Eastern Tethyan Metallogenic Domain , 2014 .

[33]  E. Carranza,et al.  Tin metallogenesis associated with granitoids in the southwestern Sanjiang Tethyan Domain: Nature, deposit types, and tectonic setting , 2014 .

[34]  K. Zaw,et al.  Geochemistry and geochronology of the Chatree epithermal gold–silver deposit: Implications for the tectonic setting of the Loei Fold Belt, central Thailand , 2014 .

[35]  M. Santosh,et al.  Tectonics and metallogeny of mainland Southeast Asia — A review and contribution , 2014 .

[36]  R. Hu,et al.  Cassiterite LA-MC-ICP-MS U/Pb and muscovite 40Ar/39Ar dating of tin deposits in the Tengchong-Lianghe tin district, NW Yunnan, China , 2014, Mineralium Deposita.

[37]  M. Searle,et al.  The metallogenic provinces of Myanmar , 2014 .

[38]  I. Metcalfe Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys , 2013 .

[39]  Sun‐Lin Chung,et al.  Zircon U–Pb ages in Myanmar: Magmatic–metamorphic events and the closure of a neo-Tethys ocean? , 2012 .

[40]  Yigang Xu,et al.  Temporal–spatial distribution and tectonic implications of the batholiths in the Gaoligong–Tengliang–Yingjiang area, western Yunnan: Constraints from zircon U–Pb ages and Hf isotopes , 2012 .

[41]  C. S. Hutchison,et al.  Tectonic evolution of the Sibumasu–Indochina terrane collision zone in Thailand and Malaysia: constraints from new U–Pb zircon chronology of SE Asian tin granitoids , 2012, Journal of the Geological Society.

[42]  Jian‐tang Peng,et al.  In situ LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China New constraints on the timing of tin-polymetallic mineralization , 2011 .

[43]  W. Myint,et al.  Geology of the High Sulfidation Copper Deposits, Monywa Mine, Myanmar , 2011 .

[44]  Yue-heng Yang,et al.  Penglai Zircon Megacrysts: A Potential New Working Reference Material for Microbeam Determination of Hf–O Isotopes and U–Pb Age , 2010 .

[45]  L. Yongsheng,et al.  Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS , 2010 .

[46]  Li-feng Zhong,et al.  Determination of rhenium content in molybdenite by ICP-MS after separation of the major matrix by solvent extraction with N-benzoyl-N-phenylhydroxalamine. , 2010, Talanta.

[47]  Mei-Fu Zhou,et al.  An improved Carius tube technique for determination of low concentrations of Re and Os in pyrites , 2010 .

[48]  P. Spry,et al.  RHENIUM-RICH MOLYBDENITE AND RHENIITE IN THE PAGONI RACHI Mo–Cu–Te–Ag–Au PROSPECT, NORTHERN GREECE: IMPLICATIONS FOR THE Re GEOCHEMISTRY OF PORPHYRY-STYLE Cu–Mo AND Mo MINERALIZATION , 2009 .

[49]  A. Barber,et al.  Structure of Sumatra and its implications for the tectonic assembly of Southeast Asia and the destruction of Paleotethys , 2009 .

[50]  Shan Gao,et al.  In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard , 2008 .

[51]  A. Neiva Geochemistry of cassiterite and wolframite from tin and tungsten quartz veins in Portugal , 2008 .

[52]  Dongliang Zhang,et al.  A precise U–Pb age on cassiterite from the Xianghualing tin-polymetallic deposit (Hunan, South China) , 2008 .

[53]  M. Whitehouse,et al.  Plesovice zircon : A new natural reference material for U-Pb and Hf isotopic microanalysis , 2008 .

[54]  Katsuhiko Suzuki,et al.  Simultaneous determination of platinum group elements and rhenium in rock samples using isotope dilution inductively coupled plasma mass spectrometry after cation exchange separation followed by solvent extraction. , 2007, Analytica chimica acta.

[55]  M. Searle,et al.  Tectonic evolution of the Mogok metamorphic belt, Burma (Myanmar) constrained by U‐Th‐Pb dating of metamorphic and magmatic rocks , 2007 .

[56]  R. Romer,et al.  Dating multiply overprinted Sn-mineralized granites—examples from the Erzgebirge, Germany , 2007 .

[57]  Yue-heng Yang,et al.  Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology , 2006 .

[58]  M. Economou-Eliopoulos,et al.  Distribution of rhenium in molybdenite from porphyry Cu–Mo and Mo–Cu deposits of Russia (Siberia) and Mongolia , 2005 .

[59]  J. Vervoort,et al.  Isotopic composition of Yb and the determination of Lu concentrations and Lu/Hf ratios by isotope dilution using MC‐ICPMS , 2004 .

[60]  R. Creaser,et al.  Macroscale NTIMS and microscale LA-MC-ICP-MS Re-Os isotopic analysis of molybdenite: Testing spatial restrictions for reliable Re-Os age determinations, and implications for the decoupling of Re and Os within molybdenite , 2004 .

[61]  Jianjun Lu,et al.  Trace and rare-earth element geochemistry in tourmaline and cassiterite from the Yunlong tin deposit, Yunnan, China: implication for migmatitic-hydrothermal fluid evolution and ore genesis , 2004 .

[62]  A. Du,et al.  Preparation and Certification of Re‐Os Dating Reference Materials: Molybdenites HLP and JDC , 2004 .

[63]  H. Stein,et al.  Subgrain-scale decoupling of Re and 187Os and assessment of laser ablation ICP-MS spot dating in molybdenite , 2003 .

[64]  K. Zaw,et al.  Jurassic to Miocene magmatism and metamorphism in the Mogok metamorphic belt and the India‐Eurasia collision in Myanmar , 2003 .

[65]  R. Maas,et al.  Lu–Hf and Sm–Nd isotope systems in zircon , 2003 .

[66]  M. Reed,et al.  Scanning electron microscope–cathodoluminescence analysis of quartz reveals complex growth histories in veins from the Butte porphyry copper deposit, Montana , 2002 .

[67]  W. Griffin,et al.  Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes , 2002 .

[68]  J. Morgan,et al.  The remarkable Re–Os chronometer in molybdenite: how and why it works , 2001 .

[69]  K. Mezger,et al.  Calibration of the Lutetium-Hafnium Clock , 2001, Science.

[70]  R. Fournier Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment , 1999 .

[71]  Mao Jingwen,et al.  Re-Os isotopic dating of molybdenites in the Xiaoliugou W (Mo) deposit in the northern Qilian mountains and its geological significance , 1999 .

[72]  S. Win,et al.  Mineral Potential of Myanmar , 1998 .

[73]  R. Walker,et al.  THE Re-Os ISOTOPE SYSTEM IN COSMOCHEMISTRY AND HIGH-TEMPERATURE GEOCHEMISTRY , 1998 .

[74]  A. Tindle,et al.  Oxide minerals of the separation rapids rare-element granitic pegmatite group, northwestern Ontario , 1998 .

[75]  A. Sánchez,et al.  Geochemistry and EPR of cassiterites from the Iberian Hercynian Massif , 1997, Mineralogical Magazine.

[76]  J. Morgan,et al.  Re-Os Ages of Group IIA, IIIA, IVA, and IVB Iron Meteorites , 1996, Science.

[77]  A. Williams-Jones,et al.  Genesis of a magmatic metamorphic hydrothermal system; the Sn-W polymetallic deposits at Pilok, Thailand , 1995 .

[78]  M. Schwartz,et al.  The Southeast Asian tin belt , 1995 .

[79]  R. Taylor,et al.  The Phuket Supersuite, Southwest Thailand; fractionated I-type granites associated with tin-tantalum mineralization , 1995 .

[80]  W. Griffin,et al.  THREE NATURAL ZIRCON STANDARDS FOR U‐TH‐PB, LU‐HF, TRACE ELEMENT AND REE ANALYSES , 1995 .

[81]  K. Myint Mineral Belts and Epochs in Myanmar , 1994 .

[82]  C. S. Hutchison Gondwana and Cathaysian blocks, palaeotethys sutures and cenozoic tectonics in South-east Asia , 1994, Geologische Rundschau.

[83]  A. Mitchell Cretaceous–Cenozoic tectonic events in the western Myanmar (Burma)–Assam region , 1993, Journal of the Geological Society.

[84]  B. Gulson,et al.  Cassiterite: Potential for direct dating of mineral deposits and a precise age for the Bushveld Complex granites , 1992 .

[85]  A. Mitchell Late Permian-Mesozoic events and the Mergui group Nappe in Myanmar and Thailand , 1992 .

[86]  J. D. Kleeman,et al.  Trace and rare earth elements in cassiterite — sources of components for the tin deposits of the Mole Granite, Australia , 1991 .

[87]  A. Searl,et al.  Cathodoluminescence and growth of cassiterite in the composite lodes at South Crofty Mine, Cornwall, England , 1991, Mineralogical Magazine.

[88]  C. Heinrich The chemistry of hydrothermal tin(-tungsten) ore deposition , 1990 .

[89]  B. Lehmann,et al.  Metallogeny of tin in central Thailand: A genetic concept , 1989 .

[90]  P. Möller,et al.  Substitution of tin in cassiterite by tantalum, niobium, tungsten, iron and manganese , 1988 .

[91]  J. Mattinson UPb ages of zircons: A basic examination of error propagation , 1987 .

[92]  A. Mitchell,et al.  Mesozoic and Cenozoic regional tectonics and metallogenesis in Mainland SE Asia , 1986 .

[93]  E. Cobbing,et al.  The granites of the Southeast Asian Tin Belt , 1986, Journal of the Geological Society.

[94]  U. K. Zaw Geology and geothermometry of vein-type W-Sn deposits at Pennaichaung and Yetkanzintaung Prospects, Tavoy Township, Tennasserim Division, southern Burma , 1984 .

[95]  A. Mitchell Phanerozoic plate boundaries in mainland SE Asia, the Himalayas and Tibet , 1981, Journal of the Geological Society.

[96]  A. Mitchell,et al.  Rift-, Subduction- and Collision-Related Tin Belts , 1979 .

[97]  A. Şengör,et al.  Mid-Mesozoic closure of Permo–Triassic Tethys and its implications , 1979, Nature.

[98]  C. S. Hutchison,et al.  Metallogenesis in SE Asia , 1978, Journal of the Geological Society.

[99]  C. S. Hutchison Ophiolite in Southeast Asia , 1975 .

[100]  R. Sippel Sandstone Petrology, Evidence from Luminescence Petrography , 1968 .

[101]  J. Smith,et al.  Electron-Excited Luminescence as a Petrologic Tool , 1965, The Journal of Geology.

[102]  D. Bannert,et al.  Geology of Burma , 1934 .

[103]  N. M. Penzer,et al.  The Mineral Resources of Burma , 1922 .

[104]  J. Campbell Tungsten deposits of Burma and their origin , 1920 .

[105]  K. Zaw,et al.  Chapter 28 Tin–tungsten deposits of Myanmar , 2017 .

[106]  M. Crow,et al.  Appendix Geochronology in Myanmar (1964–2017) , 2017, memoirs.

[107]  Xiao-Peng Wei,et al.  Geochronological, geochemical and Sr-Nd-Hf isotopic constraints on the petrogenesis of Late Cretaceous A-type granites from the Sibumasu Block, Southern Myanmar, SE Asia , 2017 .

[108]  K. Zaw Chapter 24 Overview of mineralization styles and tectonic–metallogenic setting in Myanmar , 2017, memoirs.

[109]  F. Veselovský,et al.  Laser ablation ICPMS study of trace element chemistry in molybdenite coupled with scanning electron microscopy (SEM) — An important tool for identification of different types of mineralization , 2016 .

[110]  Rongqing Zhang,et al.  Dating cassiterite using laser ablation ICP-MS , 2016 .

[111]  R. Hu,et al.  Petrogenesis of metaluminous A-type granitoids in the Tengchong–Lianghe tin belt of southwestern China: Evidences from zircon U–Pb ages and Hf–O isotopes, and whole-rock Sr–Nd isotopes , 2015 .

[112]  L. Yu Petrogenesis and tectonic significance of the Late Cretaceous magmatism in the northern part of the Baoshan block:Constraints from bulk geochemistry zircon U-Pb geochronology and Hf isotopic compositions , 2014 .

[113]  I. Metcalfe Palaeozoic–Mesozoic history of SE Asia , 2011 .

[114]  I. Metcalfe Late Palaeozoic and Mesozoic tectonic and palaeogeographical evolution of SE Asia , 2009 .

[115]  B. Gołębiowska,et al.  Geochemistry and Origin of the Cassiterite from Rędziny, Lower Silesia, Poland , 2007 .

[116]  T. Pettke,et al.  The formation of economic porphyry copper (-gold) deposits: constraints from microanalysis of fluid and melt inclusions , 2005, Geological Society, London, Special Publications.

[117]  K. Ludwig User's Manual for Isoplot 3.00 - A Geochronological Toolkit for Microsoft Excel , 2003 .

[118]  H. Wopfner Gondwana origin of the Baoshan and Tengchong terranes of west Yunnan , 1996, Geological Society, London, Special Publications.

[119]  I. Metcalfe,et al.  Pre-Cretaceous evolution of SE Asian terranes , 1996, Geological Society, London, Special Publications.

[120]  P. Charusiri,et al.  Granite belts in Thailand: evidence from the 40Ar/39Ar geochronological and geological syntheses , 1993 .

[121]  E. Yeap Tin and gold mineralizations in Peninsular Malaysia and their relationships to the tectonic development , 1993 .

[122]  K. Zaw Geological, petrogical and geochemical characteristics of granitoid rocks in Burma: with special reference to the associated WSn mineralization and their tectonic setting , 1990 .

[123]  I. Metcalfe,et al.  Origin and assembly of south-east Asian continental terranes , 1988, Geological Society, London, Special Publications.

[124]  A. Sengor Tectonics of the Tethysides: Orogenic Collage Development in a Collisional Setting , 1987 .

[125]  D. Manning,et al.  Contrasting styles of Sn-W mineralisation in peninsular Thailand and SW England , 1986 .

[126]  I. Metcalfe Stratigraphy, palaeontology and palaeogeography of the Carboniferous of Southeast Asia , 1984 .

[127]  A. Şengör The Cimmeride Orogenic System and the Tectonics of Eurasia , 1984 .

[128]  D. R. Shawe Geology and mineral deposits of Thailand , 1984 .

[129]  C. S. Hutchison Multiple Mesozoic Sn-W-Sb granitoids of southeast Asia , 1983 .

[130]  A. Mitchell,et al.  Mineral deposits and global tectonic settings , 1981 .

[131]  G. Remond Exemples d'identification et de localisation des éléments en traces dans des minéraux luminescents (cassitérites) à l'aide de l'analyseur ionique , 1973 .

[132]  H. L. Chhibber The Mineral Resources of Burma , 1922, Nature.