Electron transport in nanostructured metal-oxide semiconductors

[1]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[2]  E. Abrahams,et al.  Impurity Conduction at Low Concentrations , 1960 .

[3]  E. Montroll,et al.  Anomalous transit-time dispersion in amorphous solids , 1975 .

[4]  A. Rose,et al.  A physical interpretation of dispersive transport in disordered semiconductors , 1981 .

[5]  P. A. Cox The Electronic Structure And Chemistry Of Solids , 1987 .

[6]  Nevill Mott,et al.  Conduction in non-crystalline materials , 1989 .

[7]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[8]  Jenny Nelson,et al.  Continuous-time random-walk model of electron transport in nanocrystalline TiO 2 electrodes , 1999 .

[9]  Michael Grätzel,et al.  Recent advances in sensitized mesoscopic solar cells. , 2009, Accounts of chemical research.

[10]  Juan Bisquert,et al.  Electron transport in dye-sensitized solar cells based on ZnO nanotubes: evidence for highly efficient charge collection and exceptionally rapid dynamics. , 2009, The journal of physical chemistry. A.

[11]  F. Fabregat‐Santiago,et al.  Electron Lifetime in Dye-Sensitized Solar Cells: Theory and Interpretation of Measurements , 2009 .

[12]  Laurence Peter,et al.  "Sticky electrons" transport and interfacial transfer of electrons in the dye-sensitized solar cell. , 2009, Accounts of chemical research.

[13]  M. Lux‐Steiner,et al.  Formation of the charge selective contact in solar cells with extremely thin absorber based on ZnO-nanorod/In2S3/CuSCN , 2009 .

[14]  Juan Bisquert,et al.  Random walk numerical simulation for hopping transport at finite carrier concentrations: diffusion coefficient and transport energy concept. , 2009, Physical chemistry chemical physics : PCCP.

[15]  Laurence M. Peter,et al.  How Efficient Is Electron Collection in Dye-Sensitized Solar Cells? Comparison of Different Dynamic Methods for the Determination of the Electron Diffusion Length , 2009 .

[16]  A. Furube,et al.  Plasmon-Induced Charge Separation and Recombination Dynamics in Gold−TiO2 Nanoparticle Systems: Dependence on TiO2 Particle Size , 2009 .

[17]  Assaf Y Anderson,et al.  Re-evaluation of recombination losses in dye-sensitized cells: the failure of dynamic relaxation methods to correctly predict diffusion length in nanoporous photoelectrodes. , 2009, Nano letters.

[18]  J. Anta Random walk numerical simulation for solar cell applications , 2009 .

[19]  H. Bässler,et al.  Charge-carrier and polaron hopping mobility in disordered organic solids: Carrier-concentration and electric-field effects , 2010 .

[20]  Qing Wang,et al.  Reliable Determination of Electron Diffusion Length and Charge Separation Efficiency in Dye-Sensitized Solar Cells , 2010 .

[21]  Prashant V Kamat,et al.  Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells. , 2010, Chemical reviews.

[22]  S. Zakeeruddin,et al.  Enhanced electron collection efficiency in dye-sensitized solar cells based on nanostructured TiO(2) hollow fibers. , 2010, Nano letters.

[23]  Juan Bisquert,et al.  Simulation of Steady-State Characteristics of Dye- Sensitized Solar Cells and the Interpretation of the Diffusion Length , 2010 .

[24]  J. Durrant,et al.  Electron Diffusion Length in Mesoporous Nanocrystalline TiO2 Photoelectrodes during Water Oxidation , 2010 .

[25]  T. Mikolajick,et al.  The influence of bottom oxide thickness on the extraction of the trap energy distribution in SONOS (silicon-oxide-nitride-oxide-silicon) structures , 2010 .

[26]  Somnath C. Roy,et al.  Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. , 2010, ACS nano.

[27]  Stanislaus S. Wong,et al.  Photoelectrochemical behaviour of anatase nanoporous films: effect of the nanoparticle organization. , 2010, Nanoscale.

[28]  H. Pettersson,et al.  Dye-sensitized solar cells. , 2010, Chemical Reviews.

[29]  A. Palevski,et al.  QUANTUM LIQUIDS AND QUANTUM CRYSTALS 119 155 Resonant tunneling of electrons in quantum wires "Review… , 2010 .

[30]  Peidong Yang,et al.  Semiconductor nanowires for energy conversion , 2010, 2010 3rd International Nanoelectronics Conference (INEC).

[31]  A. Furube,et al.  Charge Separation and Trapping in N-Doped TiO2 Photocatalysts: A Time-Resolved Microwave Conductivity Study , 2010 .

[32]  G. Boschloo,et al.  Comparison of trap-state distribution and carrier transport in nanotubular and nanoparticulate TiO(2) electrodes for dye-sensitized solar cells. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[33]  Qing Wang,et al.  Influence of Lithium Ion Concentration on Electron Injection, Transport, and Recombination in Dye-Sensitized Solar Cells , 2010 .

[34]  Juan Bisquert,et al.  Determination of the Electron Diffusion Length in Dye-Sensitized Solar Cells by Random Walk Simulation: Compensation Effects and Voltage Dependence , 2010 .

[35]  Quantum transport in GaN/AlN double-barrier heterostructure nanowires. , 2010, Nano letters.

[36]  J. Bisquert,et al.  Modeling high-efficiency quantum dot sensitized solar cells. , 2010, ACS nano.

[37]  G. Oskam,et al.  A simple numerical model for the charge transport and recombination properties of dye-sensitized solar cells: A comparison of transport-limited and transfer-limited recombination , 2010 .

[38]  Xiuli Wang,et al.  Trap states and carrier dynamics of TiO(2) studied by photoluminescence spectroscopy under weak excitation condition. , 2010, Physical chemistry chemical physics : PCCP.

[39]  J. Luther,et al.  Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. , 2010, Chemical reviews.

[40]  A. Nozik Nanoscience and nanostructures for photovoltaics and solar fuels. , 2010, Nano letters.

[41]  V. Sundström,et al.  Influence of the electron-cation interaction on electron mobility in dye-sensitized ZnO and TiO2 nanocrystals: a study using ultrafast terahertz spectroscopy. , 2010, Physical review letters.

[42]  E. Blart,et al.  New photovoltaic devices based on the sensitization of p-type semiconductors: challenges and opportunities. , 2010, Accounts of chemical research.

[43]  H. Teng,et al.  Electron Transport Patterns in TiO2 Nanocrystalline Films of Dye-Sensitized Solar Cells , 2010 .

[44]  S. Cronin,et al.  Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. , 2011, Nano letters.

[45]  Laurence M. Peter,et al.  Electron Transport and Recombination in ZnO-Based Dye-Sensitized Solar Cells , 2011 .

[46]  H. Teng,et al.  Structure and Electron-Conducting Ability of TiO(2) Films from Electrophoretic Deposition and Paste-Coating for Dye-Sensitized Solar Cells , 2011 .

[47]  M. Thelakkat,et al.  Multichromophore light harvesting in hybrid solar cells. , 2011, Physical chemistry chemical physics : PCCP.

[48]  Michael Grätzel,et al.  Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency , 2011, Science.

[49]  Ahmed Ennaoui,et al.  Concepts of inorganic solid-state nanostructured solar cells , 2011 .

[50]  J. Bisquert,et al.  Interpretation of trap-limited mobility in space-charge limited current in organic layers with exponential density of traps , 2011 .

[51]  D. Barreca,et al.  F-Doped Co3O4 photocatalysts for sustainable H2 generation from water/ethanol. , 2011, Journal of the American Chemical Society.

[52]  Priti Tiwana,et al.  Electron mobility and injection dynamics in mesoporous ZnO, SnO₂, and TiO₂ films used in dye-sensitized solar cells. , 2011, ACS nano.

[53]  P. Pehrsson,et al.  Space-charge-limited currents and trap characterization in coaxial AlGaN/GaN nanowires , 2011 .

[54]  J. Bisquert,et al.  On Voltage, Photovoltage, and Photocurrent in Bulk Heterojunction Organic Solar Cells , 2011 .

[55]  Laurence M. Peter,et al.  The Grätzel Cell: Where Next? , 2011 .

[56]  D. Birnie,et al.  Enhanced electron transport through template-derived pore channels in dye-sensitized solar cells , 2011 .

[57]  Guozhong Cao,et al.  Nanostructured photoelectrodes for dye-sensitized solar cells , 2011 .

[58]  D. Y. Kim,et al.  High-efficiency, solid-state, dye-sensitized solar cells using hierarchically structured TiO₂ nanofibers. , 2011, ACS applied materials & interfaces.

[59]  B. Engels,et al.  First-principles calculations of anisotropic charge-carrier mobilities in organic semiconductor crystals , 2011, 1102.4289.

[60]  B. Wood,et al.  Vertically aligned nanorod-like rutile TiO2 single crystal nanowire bundles with superior electron transport and photoelectrocatalytic properties , 2012 .

[61]  J. Anta,et al.  How Important is Working with an Ordered Electrode to Improve the Charge Collection Efficiency in Nanostructured Solar Cells? , 2012, The journal of physical chemistry letters.

[62]  Y. Abdi,et al.  Monte Carlo Random Walk Simulation of Electron Transport in Dye-Sensitized Nanocrystalline Solar Cells: Influence of Morphology and Trap Distribution , 2012 .