On Pebble Automata

Abstract We look at two simple variations of space-bounded Turing machines (TM's): An off-line S(n) -space bounded TM where S(n) is below log n , which can use a pebble on the input tape, and a TM with two (or three) pebbles and no workspace. We show that in the former case, a pebble increases the recognition power of the device. The latter model(s) can accept large families of languages. For example, 2-pebble automata can accept languages accepted by deterministic checking stack automata, and 3-pebble automata can accept languages accepted by ‘stack-resetting’ two-way deterministic pushdown automata. Moreover, the pebble automata are halting (i.e., halt on all inputs).

[1]  Ivan Hal Sudborough,et al.  On Eliminating Nondeterminism from Turing Machines which Use less than Logarithm Worktape Space , 1982, Theor. Comput. Sci..

[2]  Michael Sipser,et al.  Halting space-bounded computations , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[3]  Frederick N. Springsteel,et al.  Language Recognition by Marking Automata , 1972, Inf. Control..

[4]  Juris Hartmanis,et al.  On Tape Bounds for Single Letter Alphabet Language Processing , 1976, Theor. Comput. Sci..

[5]  Sheila A. Greibach,et al.  Checking Automata and One-Way Stack Languages , 1969, J. Comput. Syst. Sci..

[6]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[7]  Oscar H. Ibarra,et al.  Characterizations of Some Tape and Time Complexity Classes of Turing Machines in Terms of Multihead and Auxiliary Stack Automata , 1971, J. Comput. Syst. Sci..

[8]  Alfred V. Aho,et al.  Time and Tape Complexity of Pushdown Automaton Languages , 1968, Inf. Control..

[9]  Richard Edwin Stearns,et al.  Hierarchies of memory limited computations , 1965, SWCT.

[10]  Sheila A. Greibach,et al.  An Infinite Hierarchy of Context-Free Languages , 1969, JACM.

[11]  F. C. Hennie,et al.  One-Tape, Off-Line Turing Machine Computations , 1965, Inf. Control..

[12]  Richard E. Ladner,et al.  Space Bounds for Processing Contentless Inputs , 1975, J. Comput. Syst. Sci..

[13]  Kurt Mehlhorn,et al.  A language over a one symbol alphabet requiring only O (log log n) space , 1975, SIGA.