Efficient nonlinear filtering of a singularly perturbed stochastic hybrid system

Our focus in this work is to investigate an efficient state estimation scheme for a singularly perturbed stochastic hybrid system. As stochastic hybrid systems have been used recently in diverse areas, the importance of correct and efficient estimation of such systems cannot be overemphasized. The framework of nonlinear filtering provides a suitable ground for on-line estimation. With the help of intrinsic multiscale properties of a system, we obtain an efficient estimation scheme for a stochastic hybrid system.

[1]  E. Wong,et al.  On Polynomial Expansions of Second-Order Distributions , 1962 .

[2]  J. Filar,et al.  Control of singularly perturbed hybrid stochastic systems , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[3]  Hypercontractivity properties of nonsymmetric ornstein-uhlenbeck semigroups in hilbert spaces , 1998 .

[4]  G. Yin,et al.  Hybrid Switching Diffusions: Properties and Applications , 2009 .

[5]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[6]  Simon J. Godsill,et al.  On sequential simulation-based methods for Bayesian filtering , 1998 .

[7]  Boris Lʹvovich Rozovskiĭ Stochastic Evolution Systems: Linear Theory and Applications to Non-linear Filtering , 2012 .

[8]  Panagiotis Stinis,et al.  Variance Reduction for Particle Filters of Systems With Time Scale Separation , 2007, IEEE Transactions on Signal Processing.

[9]  Murray Rosenblatt,et al.  Studies in Probability Theory , 1978 .

[10]  Ovidiu Radulescu,et al.  Hybrid stochastic simplifications for multiscale gene networks , 2009, BMC Systems Biology.

[11]  N. Namachchivaya,et al.  Dimensional reduction in nonlinear filtering , 2010 .

[12]  David D. Sworder,et al.  Estimation Problems in Hybrid Systems , 1999 .

[13]  R. Z. Khasminskii,et al.  Singularly Perturbed Switching Diffusions: Rapid Switchings and Fast Diffusions , 1999 .

[14]  Hong Wang,et al.  Mathematical theory of molecular motors and a new approach for uncovering motor mechanism. , 2003, IEE proceedings. Nanobiotechnology.

[15]  H. Balakrishnan,et al.  State estimation for hybrid systems: applications to aircraft tracking , 2006 .

[16]  Joseph A. O'Sullivan,et al.  Automatic target recognition organized via jump-diffusion algorithms , 1997, IEEE Trans. Image Process..

[17]  N. Namachchivaya,et al.  Particle Filters in a Multiscale Environment: Homogenized Hybrid Particle Filter , 2011 .

[18]  D. Crisan,et al.  Fundamentals of Stochastic Filtering , 2008 .

[19]  B. Rozovskii Stochastic Evolution Systems , 1990 .

[20]  F. Daum Exact finite dimensional nonlinear filters , 1985, 1985 24th IEEE Conference on Decision and Control.

[21]  V. Benes Exact finite-dimensional filters for certain diffusions with nonlinear drift , 1981 .

[22]  F. Verhulst Methods and Applications of Singular Perturbations: Boundary Layers and Multiple Timescale Dynamics , 2010 .

[23]  M. Zakai On the optimal filtering of diffusion processes , 1969 .

[24]  Qing Zhang,et al.  Nearly-Optimal Asset Allocation in Hybrid Stock Investment Models , 2004 .

[25]  Boris Rozovskii,et al.  Interactive banks of Bayesian matched filters , 2000, SPIE Defense + Commercial Sensing.

[26]  Hassan K. Khalil,et al.  Singular perturbation methods in control : analysis and design , 1986 .

[27]  V.E.Adler,et al.  Q4 , 2003, nlin/0309030.

[28]  N. Sri Namachchivaya,et al.  A PROBLEM IN STOCHASTIC AVERAGING OF NONLINEAR FILTERS , 2008 .