Ruthenium Variation in Chromite from Komatiites and Komatiitic Basalts—A Potential Mineralogical Indicator for Nickel Sulfide Mineralization

More than 390 chromite grains from komatiites and komatiitic basalts from the Yilgarn craton of Western Australia and the Finnish part of the Fennoscandian Shield were analyzed using in situ laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to identify ruthenium (Ru) signatures in chromite associated with nickel sulfide-bearing rocks. Results indicate a potential method to discriminate mineralized and barren komatiite and komatiitic basalt units based on Ru concentrations in chromite and indicate potential for chromite to be used as a resistate indicator mineral in exploration for komatiite-associated nickel sulfide deposits. Chromites from barren komatiites and komatiitic basalts display Ru concentrations mostly between ∼150 and 600 ppb. Chromites from mineralized units have distinctly lower Ru contents (<150 ppb). These results can be interpreted in terms of the much higher partition coefficient for Ru into sulfide liquid compared to that of Ru into chromite, resulting in much lower Ru concentrations in chromite where both chromite and sulfide liquid are present and competing for Ru. As a result, the Ru content of chromite can be used to determine if a komatiite melt equilibrated with a sulfide liquid during crystallization, and therefore, if a system and/or sequence is prospective for nickel sulfide mineralization. The strength of this method compared to previous whole-rock exploration techniques derives from combining (1) the geochemical properties of a chalcophile element that records an ore-forming process while being strongly immobile during postmagmatic processes, with (2) the in situ analysis of a mineral that is generally preserved even in highly altered and mildly weathered komatiites and that is a common constituent of detrital heavy mineral samples. Chromite Ru content has potential as a prospectivity indicator, applicable to a wide range of media including bedrock, laterites, and detrital resistates heavy mineral samples.

[1]  T. Oberthür,et al.  The oxidized ores of the Main Sulphide Zone, Great Dyke, Zimbabwe: turning resources into minable reserves - mineralogy is the key , 2013 .

[2]  S. Barnes,et al.  Komatiite Magmas and Sulfide Nickel Deposits: A Comparison of Variably Endowed Archean Terranes , 2012 .

[3]  J. Bédard,et al.  In situ determination of Os, Ir, and Ru in chromites formed from komatiite, tholeiite and boninite magmas: Implications for chromite control of Os, Ir and Ru during partial melting and crystal fractionation , 2012 .

[4]  W. McDonough,et al.  Experimental constraints on the partitioning of Ru, Rh, Ir, Pt and Pd between chromite and silicate melt: The importance of ferric iron , 2012 .

[5]  S. Eggins,et al.  Enrichment of Rh, Ru, Ir and Os in Cr spinels from oxidized magmas: Evidence from the Ambae volcano, Vanuatu , 2012 .

[6]  N. Pearson,et al.  Ruthenium in komatiitic chromite , 2011 .

[7]  O. Burnham,et al.  Platinum Group Element Geochemistry of Mineralized and Nonmineralized Komatiites and Basalts , 2010 .

[8]  H. Cookenboo,et al.  Mantle-derived indicator mineral compositions as applied to diamond exploration , 2010 .

[9]  A. Bekker,et al.  Atmospheric Sulfur in Archean Komatiite-Hosted Nickel Deposits , 2009, Science.

[10]  N. Pearson,et al.  Anomalous Sulfur-Poor Platinum Group Element Mineralization in Komatiitic Cumulates, Mount Clifford, Western Australia , 2009 .

[11]  S. Barnes,et al.  Effects of Magmatic Processes, Serpentinization, and Talc-Carbonate Alteration on Sulfide Mineralogy and Ore Textures in the Black Swan Disseminated Nickel Sulfide Deposit, Yilgarn Craton , 2009 .

[12]  S. Barnes,et al.  Iridium, ruthenium and rhodium in komatiites: Evidence for iridium alloy saturation , 2008 .

[13]  S. Beresford,et al.  RUTHENIUM-CHROMIUM VARIATION: A NEW LITHOGEOCHEMICAL TOOL IN THE EXPLORATION FOR KOMATIITE-HOSTED Ni-Cu-(PGE) DEPOSITS , 2008 .

[14]  D. Champion,et al.  SHRIMP U-Pb zircon age constraints on the Late Archaean tectonostratigraphic architecture of the Eastern Goldfields Superterrane, Yilgarn Craton, Western Australia , 2008 .

[15]  S. Beresford,et al.  Atypical stratiform sulfide-poor platinum-group element mineralisation in the Agnew – Wiluna Belt komatiites, Wiluna, Western Australia , 2007 .

[16]  S. Beresford,et al.  Controls on the emplacement and genesis of the MKD5 and Sarah’s Find Ni–Cu–PGE deposits, Mount Keith, Agnew–Wiluna Greenstone Belt, Western Australia , 2007 .

[17]  R. Cas,et al.  Internal stratigraphic architecture of the komatiitic dunite-hosted MKD5 disseminated nickel sulfide deposit, Mount Keith Domain, Agnew-Wiluna Greenstone Belt, Western Australia , 2007 .

[18]  V. Laurenz,et al.  Fractionation of the noble metals by physical processes , 2006 .

[19]  K. Scott,et al.  Rutile geochemistry as a guide to porphyry Cu–Au mineralization, Northparkes, New South Wales, Australia , 2005, Geochemistry: Exploration, Environment, Analysis.

[20]  R. E. Hill,et al.  Lithogeochemical exploration for komatiite-associated Ni-sulfide deposits: strategies and limitations , 2004 .

[21]  R. E. Hill,et al.  Komatiites and nickel sulfide ores of the Black Swan area, Yilgarn Craton, Western Australia. 2: Geology and genesis of the orebodies , 2004 .

[22]  S. Barnes Komatiites and nickel sulfide ores of the Black Swan area, Yilgarn Craton, Western Australia. 4. Platinum group element distribution in the ores, and genetic implications , 2004 .

[23]  A. J. Naldrett Magmatic Sulfide Deposits: Geology, Geochemistry and Exploration , 2004 .

[24]  S. Beresford,et al.  Platinum-group element alloy inclusions in chromites from Archaean mafic-ultramafic units: evidence from the Abitibi and the Agnew-Wiluna Greenstone Belts , 2004 .

[25]  M. Stalder,et al.  Apatite nodules as an indicator of depositional environment and ore genesis for the Mesoproterozoic Broken Hill-type Gamsberg Zn–Pb deposit, Namaqua Province, South Africa , 2004 .

[26]  K. Righter,et al.  Partitioning of Ru, Rh, Pd, Re, Ir, and Au between Cr-bearing spinel, olivine, pyroxene and silicate melts 1 1 Associate editor: C. R. Neal , 2004 .

[27]  M. Humayun,et al.  Platinum group element fractionation in a komatiitic basalt lava lake , 2001 .

[28]  O. Burnham,et al.  TRACE-ELEMENT GEOCHEMISTRY AND PETROGENESIS OF BARREN AND ORE-ASSOCIATED KOMATIITES , 2001 .

[29]  D. Canil,et al.  OLIVINE-LIQUID PARTITIONING OF VANADIUM AND OTHER TRACE ELEMENTS, WITH APPLICATIONS TO MODERN AND ANCIENT PICRITES , 2001 .

[30]  M. Humayun,et al.  Platinum group elements in Kostomuksha komatiites and basalts: Implications for oceanic crust recycling and core-mantle interaction , 2000 .

[31]  S. Barnes,et al.  Spinels and Mg Ilmenites from the Noril’sk 1 and Talnakh Intrusions and Other Mafic Rocks of the Siberian Flood Basalt Province , 2000 .

[32]  W. Griffin,et al.  Non-chondritic distribution of the highly siderophile elements in mantle sulphides , 2000, Nature.

[33]  S. Barnes Chromite in Komatiites, II. Modification during Greenschist to Mid-Amphibolite Facies Metamorphism , 2000 .

[34]  S. Barnes,et al.  Chrome Spinels from the Jinchuan Ni-Cu Sulfide Deposit, Gansu Province, People's Republic of China , 1999 .

[35]  S. Barnes Chromite in Komatiites, 1. Magmatic Controls on Crystallization and Composition , 1998 .

[36]  S. Barnes,et al.  Exploration for magmatic Ni-Cu-PGE sulphide deposits; a review of recent advances in the use of geochemical tools, and their application to some South African ores , 1998 .

[37]  D. Canil Vanadium partitioning and the oxidation state of Archaean komatiite magmas , 1997, Nature.

[38]  M. Fleet,et al.  Implications of composition for experimental partitioning of platinum-group elements and gold between sulfide liquid and basalt melt: The significance of nickel content , 1997 .

[39]  W. Griffin,et al.  QUANTITATIVE ANALYSIS OF TRACE ELEMENTS IN GEOLOGICAL MATERIALS BY LASER ABLATION ICPMS: INSTRUMENTAL OPERATING CONDITIONS AND CALIBRATION VALUES OF NIST GLASSES , 1996 .

[40]  E. Mathez,et al.  Constraints on the formation of platinum-group element deposits in igneous rocks , 1996 .

[41]  J. Gurney,et al.  The interpretation of the major element compositions of mantle minerals in diamond exploration , 1995 .

[42]  W. Griffin,et al.  Trace elements in indicator minerals: area selection and target evaluation in diamond exploration , 1995 .

[43]  R. E. Hill,et al.  Poikilitic chromfite in komatiitic cumulates , 1995 .

[44]  C. Capobianco,et al.  Experiments on crystal/liquid partitioning of Ru, Rh and Pd for magnetite and hematite solid solutions crystallized from silicate melt , 1994 .

[45]  M. Fleet,et al.  Partitioning of palladium, iridium, and platinum between sulfide liquid and basalt melt: Effects of melt composition, concentration, and oxygen fugacity , 1991 .

[46]  M. Fleet,et al.  Partitioning of palladium, iridium, platinum, and gold between sulfide liquid and basalt melt at 1200°C , 1990 .

[47]  C. Capobianco,et al.  Partitioning of ruthenium, rhodium, and palladium between spinel and silicate melt and implications for platinum group element fractionation trends , 1990 .

[48]  D. Groves,et al.  Magmatic contacts between immiscible sulfide and komatiite melts; implications for genesis of Kambalda sulfide ores , 1989 .

[49]  H. Huppert,et al.  Emplacement and cooling of komatiite lavas , 1984, Nature.

[50]  D. C. Green,et al.  The occurrence of chromite in the Andersons Creek area, Beaconsfield, Tasmania , 1981 .

[51]  F. Cesbron,et al.  Rutile and apatite: Useful prospecting guides for porphyry copper deposits , 1977, Mineralogical Magazine.

[52]  T. Oberthür,et al.  Platinum-group element distribution in the oxidized Main Sulfide Zone, Great Dyke, Zimbabwe , 2010 .

[53]  R. Keays,et al.  Komatiite-associated Ni-Cu-PGE deposits: Geology, mineralogy, geochemistry and genesis , 2002 .

[54]  R. E. Hill,et al.  The volcanology of komatiites as deduced from field relationships in the Norseman-Wiluna greenstone belt, Western Australia , 1995 .

[55]  R. Keays The role of komatiitic and picritic magmatism and S-saturation in the formation of ore deposits , 1995 .