Information theory of quantum entanglement and measurement

Abstract We present a quantum information theory that allows for a consistent description of entanglement. It parallels classical (Shannon) information theory but is based entirely on density matrices rather than probability distributions for the description of quantum ensembles. We find that quantum (von Neumann) conditional entropies can be negative for entangled systems, which leads to a violation of entropic Bell inequalities. Quantum inseparability can be related, in this theory, to the appearance of “unclassical” eigenvalues in the spectrum of a conditional “amplitude” matrix that underlies the quantum conditional entropy. Such a unified information-theoretic description of classical correlation and quantum entanglement clarifies the link between them: the latter can be viewed as “super-correlation” which can induce classical correlation when considering a tripartite or larger system. Furthermore, the characterization of entanglment with negative conditional entropies paves the way to a natural information-theoretic description of the measurement process. This model, while unitary and causal, implies the well-known probabilistic results of conventional quantum mechanics. It also results in a simple interpretation of the Levitin-Kholevo theorem limiting the accessible information in a quantum measurement.

[1]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[2]  Schumacher,et al.  Limitation on the amount of accessible information in a quantum channel. , 1996, Physical review letters.

[3]  C. Adami,et al.  Negative entropy and information in quantum mechanics , 1995, quant-ph/9512022.

[4]  Yuen,et al.  Ultimate information carrying limit of quantum systems. , 1993, Physical review letters.

[5]  Nicolas J. Cerf,et al.  Quantum information theory of entanglement , 1996 .

[6]  J. Neumann Mathematische grundlagen der Quantenmechanik , 1935 .

[7]  S. Lloyd Quantum-Mechanical Computers , 1995 .

[8]  Benjamin Schumacher,et al.  A new proof of the quantum noiseless coding theorem , 1994 .

[9]  S Lloyd,et al.  A Potentially Realizable Quantum Computer , 1993, Science.

[10]  W. H. Zurek Complexity, Entropy and the Physics of Information , 1990 .

[11]  W. Zurek The Environment, Decoherence and the Transition from Quantum to Classical , 1991 .

[12]  C. H. Bennett,et al.  Quantum Information and Computation , 1995 .

[13]  J. Wheeler,et al.  Quantum theory and measurement , 1983 .

[14]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[15]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[16]  Lov K. Grover,et al.  Quantum computation , 1999, Proceedings Twelfth International Conference on VLSI Design. (Cat. No.PR00013).

[17]  A. Wehrl General properties of entropy , 1978 .

[18]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[19]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[20]  N. Mermin Quantum mysteries revisited , 1990 .

[21]  R. Cleve,et al.  Information-theoretic interpretation of quantum error-correcting codes , 1997, quant-ph/9702031.

[22]  R. Jozsa,et al.  Lower bound for accessible information in quantum mechanics. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[23]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[24]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[25]  Caves,et al.  Ensemble-dependent bounds for accessible information in quantum mechanics. , 1994, Physical review letters.

[26]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[27]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[28]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[29]  L. Ballentine,et al.  Quantum Theory: Concepts and Methods , 1994 .

[30]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[31]  Nicolas J. Cerf,et al.  Negative entropy in quantum information theory , 1996 .

[32]  N. J. Cerf,et al.  Entropic Bell inequalities , 1997 .

[33]  L. B. Levitin On the quantum measure of information , 1996 .

[34]  Horodecki Information-theoretic aspects of inseparability of mixed states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[35]  R. Jozsa,et al.  Quantum Computation and Shor's Factoring Algorithm , 1996 .

[36]  C. Adami,et al.  VON NEUMANN CAPACITY OF NOISY QUANTUM CHANNELS , 1996 .

[37]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[38]  M. Kafatos Bell's theorem, quantum theory and conceptions of the universe , 1989 .

[39]  D. Dieks Communication by EPR devices , 1982 .