Surface topographical effects in the diffusion bonding of 316 stainless steel

[1]  Jun Chen,et al.  Diffusion bonding criterion based on real surface asperities: Modeling and validation , 2020 .

[2]  Sung Hwan Kim,et al.  Microstructure and Tensile Properties of Diffusion Bonded Austenitic Fe-Base Alloys—Before and After Exposure to High Temperature Supercritical-CO2 , 2020, Metals.

[3]  M. Ramulu,et al.  Surface tracking of diffusion bonding void closure and its application to titanium alloys , 2020, International Journal of Material Forming.

[4]  V. Balasubramanian,et al.  High-temperature diffusion bonding of austenitic stainless steel to titanium dissimilar joints , 2019, Materials Research Express.

[5]  B. Paul,et al.  Feasibility of Using Diffusion Bonding for Producing Hybrid Printed Circuit Heat Exchangers for Nuclear Energy Applications , 2018 .

[6]  P. Gregorčič,et al.  Use of the Roughness Parameters Ssk and Sku to Control Friction—A Method for Designing Surface Texturing , 2017 .

[7]  V. Balasubramanian,et al.  Diffusion bonding of titanium and AA 7075 aluminum alloy dissimilar joints—process modeling and optimization using desirability approach , 2016 .

[8]  Di Zhang,et al.  Characterization of the diffusion bonding behavior of pure Ti and Ni with different surface roughness during hot pressing , 2015 .

[9]  M. Anderson,et al.  Advanced heat exchanger development for molten salts , 2014 .

[10]  T. Ishiguro,et al.  Influence of Cold Rolling on Diffusion Bondability of SUS316L Stainless Steel Sheets , 2014 .

[11]  B. Ravisankar,et al.  Diffusion bonding of SU 263 , 2009 .

[12]  Z. Huang,et al.  The effects of various finished surfaces on diffusion bonding , 2008 .

[13]  F. Xuan,et al.  Microstructure evolution and interfacial failure mechanism in 316LSS diffusion-bonded joints , 2008 .

[14]  F. Xuan,et al.  In situ observation of interfacial fatigue crack growth in diffusion bonded joints of austenitic stainless steel , 2007 .

[15]  Z. Huang,et al.  Dynamic simulation of solid-state diffusion bonding , 2007 .

[16]  Brian K. Paul,et al.  Micro Energy and Chemical Systems (MECS) and Multiscale Fabrication , 2006 .

[17]  F. Xuan,et al.  High Temperature Performance of 316L-SS Joint Produced by Diffusion Bonding , 2005 .

[18]  R. S. Chandel,et al.  Effect of surface roughness on the diffusion bonding of Incoloy MA 956 , 2005 .

[19]  Christoph Pluess Application of controlled thermal expansion in diffusion bonding for the high-volume microlamination of MECS devices , 2004 .

[20]  Mpf Sutcliffe,et al.  Identification of surface features on cold-rolled stainless steel strip , 2000 .

[21]  M. Eroglu,et al.  A new model for diffusion bonding and its application to duplex alloys , 1999 .

[22]  A. S. Zuruzi,et al.  Effects of surface roughness on the diffusion bonding of Al alloy 6061 in air , 1999 .

[23]  Wendy D. Bennett,et al.  MICROFABRICATION METHODS FOR MICROCHANNEL REACTORS AND SEPARATIONS SYSTEMS , 1999 .

[24]  K. Inoue,et al.  Recent void shrinkage models and their applicability to diffusion bonding , 1992 .

[25]  E. Wallach,et al.  Modelling solid-state diffusion bonding , 1989 .

[26]  Takashi Kobayashi,et al.  Development of high heat flux component fabrication technology , 1989 .

[27]  J. Pilling The kinetics of isostatic diffusion bonding in superplastic materials , 1988 .

[28]  Zhengxiao Guo,et al.  Modelling of diffusion bonding of metals , 1987 .

[29]  J. Hawkyard,et al.  Solid state bonding in superplastic Ti-6Al-4V , 1984 .

[30]  B. Derby,et al.  Diffusion bonding: Development of theoretical model , 1984 .

[31]  B. Derby,et al.  Theoretical model for diffusion bonding , 1982 .

[32]  T. W. Gibbs,et al.  Short-Time Tensile Properties of Type 316 Stainless Steel at Very High Temperatures , 1961 .