HMDB: A curated database of genes involved in hydrocarbon monooxygenation reaction with homologous genes as background.

[1]  A. Táncsics,et al.  Combined Omics Approach Reveals Key Differences between Aerobic and Microaerobic Xylene-Degrading Enrichment Bacterial Communities: Rhodoferax─A Hitherto Unknown Player Emerges from the Microbial Dark Matter. , 2023, Environmental science & technology.

[2]  L. Pardo-López,et al.  HADEG: A Curated Database of Hydrocarbon Aerobic Degradation Enzymes and Genes , 2022, bioRxiv.

[3]  Nandita Das,et al.  Correlation of soil microbiome with crude oil contamination drives detection of hydrocarbon degrading genes which are independent to quantity and type of contaminants. , 2022, Environmental research.

[4]  I. Semiletov,et al.  Polycyclic aromatic hydrocarbons in the Siberian Arctic seas sediments. , 2022, Marine pollution bulletin.

[5]  P. Couture,et al.  The effects of dissolved petroleum hydrocarbons on benthic organisms: Chironomids and amphipods. , 2022, Ecotoxicology and environmental safety.

[6]  Zhili He,et al.  MCycDB: A curated database for comprehensively profiling methane cycling processes of environmental microbiomes , 2022, Molecular ecology resources.

[7]  K. Katz,et al.  The Sequence Read Archive: a decade more of explosive growth , 2021, Nucleic Acids Res..

[8]  S. Shamim,et al.  Plastics degradation by microbes: A sustainable approach , 2021 .

[9]  M. Strous,et al.  CANT-HYD: A Curated Database of Phylogeny-Derived Hidden Markov Models for Annotation of Marker Genes Involved in Hydrocarbon Degradation , 2021, bioRxiv.

[10]  P. Bork,et al.  Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation , 2021, Nucleic Acids Res..

[11]  Nishi K. Singh,et al.  Bacterial and archaeal diversity in oil fields and reservoirs and their potential role in hydrocarbon recovery and bioprospecting , 2021, Environmental Science and Pollution Research.

[12]  Peter B. McGarvey,et al.  UniProt: the universal protein knowledgebase in 2021 , 2020, Nucleic Acids Res..

[13]  Michael Y. Galperin,et al.  COG database update: focus on microbial diversity, model organisms, and widespread pathogens , 2020, Nucleic Acids Res..

[14]  Minoru Kanehisa,et al.  KEGG: integrating viruses and cellular organisms , 2020, Nucleic Acids Res..

[15]  R. Meckenstock,et al.  Marine sediments harbor diverse archaea and bacteria with the potential for anaerobic hydrocarbon degradation via fumarate addition. , 2020, FEMS microbiology ecology.

[16]  J. Biddle,et al.  Novel clostridial lineages recovered from metagenomes of a hot oil reservoir , 2020, Scientific Reports.

[17]  T. Urich,et al.  Diversity and degradative capabilities of bacteria and fungi isolated from oil-contaminated and hydrocarbon-polluted soils in Kazakhstan , 2019, Applied Microbiology and Biotechnology.

[18]  Lei Cheng,et al.  NCycDB: a curated integrative database for fast and accurate metagenomic profiling of nitrogen cycling genes , 2018, Bioinform..

[19]  P. Kaszycki,et al.  Aerobic bacteria degrading both n-alkanes and aromatic hydrocarbons: an undervalued strategy for metabolic diversity and flexibility , 2018, Biodegradation.

[20]  F. Musat,et al.  Establishing anaerobic hydrocarbon-degrading enrichment cultures of microorganisms under strictly anoxic conditions , 2018, Nature Protocols.

[21]  T. Knaus,et al.  A Chimeric Styrene Monooxygenase with Increased Efficiency in Asymmetric Biocatalytic Epoxidation , 2018, Chembiochem : a European journal of chemical biology.

[22]  J. Ferveur,et al.  Desiccation resistance: effect of cuticular hydrocarbons and water content in Drosophila melanogaster adults , 2018, PeerJ.

[23]  Woojun Park,et al.  Metabolic and stress responses of Acinetobacter oleivorans DR1 during long‐chain alkane degradation , 2017, Microbial biotechnology.

[24]  C. Hefer,et al.  Exploiting Natural Variation to Uncover an Alkene Biosynthetic Enzyme in Poplar[OPEN] , 2017, Plant Cell.

[25]  T. Nazina,et al.  Detection of n-alkane biodegradation genes alkB and ladA in thermophilic hydrocarbon-oxidizing bacteria of the genera Aeribacillus and Geobacillus , 2016, Microbiology.

[26]  K. Pollard,et al.  Toward Accurate and Quantitative Comparative Metagenomics , 2016, Cell.

[27]  Limin Hu,et al.  Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments from the Bering Sea and western Arctic Ocean. , 2016, Marine pollution bulletin.

[28]  Brian C. Thomas,et al.  Genome-Resolved Metagenomic Analysis Reveals Roles for Candidate Phyla and Other Microbial Community Members in Biogeochemical Transformations in Oil Reservoirs , 2016, mBio.

[29]  Wen J. Li,et al.  Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation , 2015, Nucleic Acids Res..

[30]  Robert D. Finn,et al.  HMMER web server: 2015 update , 2015, Nucleic Acids Res..

[31]  Z. Shao,et al.  The long-chain alkane metabolism network of Alcanivorax dieselolei , 2014, Nature Communications.

[32]  Kunihiko Sadakane,et al.  MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph , 2014, Bioinform..

[33]  Xiao-Lei Wu,et al.  Diverse alkane hydroxylase genes in microorganisms and environments , 2014, Scientific Reports.

[34]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[35]  M. Morikawa,et al.  Cloning and expression of three ladA-type alkane monooxygenase genes from an extremely thermophilic alkane-degrading bacterium Geobacillus thermoleovorans B23 , 2014, Extremophiles.

[36]  G. Strobel Methods of discovery and techniques to study endophytic fungi producing fuel-related hydrocarbons. , 2014, Natural product reports.

[37]  Howard Junca,et al.  AromaDeg, a novel database for phylogenomics of aerobic bacterial degradation of aromatics , 2014, Database J. Biol. Databases Curation.

[38]  Z. Shao,et al.  Enzymes and genes involved in aerobic alkane degradation , 2013, Front. Microbiol..

[39]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[40]  Rasko Leinonen,et al.  The sequence read archive: explosive growth of sequencing data , 2011, Nucleic Acids Res..

[41]  M. Riedel,et al.  Host Sex Discrimination by an Egg Parasitoid on Brassica Leaves , 2011, Journal of Chemical Ecology.

[42]  K. Kino,et al.  Identification of the Monooxygenase Gene Clusters Responsible for the Regioselective Oxidation of Phenol to Hydroquinone in Mycobacteria , 2010, Applied and Environmental Microbiology.

[43]  H. Ellis The FMN-dependent two-component monooxygenase systems. , 2010, Archives of biochemistry and biophysics.

[44]  Paramvir S. Dehal,et al.  FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments , 2010, PloS one.

[45]  Miriam L. Land,et al.  Trace: Tennessee Research and Creative Exchange Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification Recommended Citation Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification , 2022 .

[46]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[47]  F. Rojo Degradation of alkanes by bacteria. , 2009, Environmental microbiology.

[48]  B. Fox,et al.  Crystallographic and catalytic studies of the peroxide-shunt reaction in a diiron hydroxylase. , 2009, Biochemistry.

[49]  B. Fox,et al.  Role for threonine 201 in the catalytic cycle of the soluble diiron hydroxylase toluene 4-monooxygenase. , 2009, Biochemistry.

[50]  George N Phillips,et al.  Structural consequences of effector protein complex formation in a diiron hydroxylase , 2008, Proceedings of the National Academy of Sciences.

[51]  A. Wentzel,et al.  Identification of Novel Genes Involved in Long-Chain n-Alkane Degradation by Acinetobacter sp. Strain DSM 17874 , 2007, Applied and Environmental Microbiology.

[52]  Lei Wang,et al.  Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir , 2007, Proceedings of the National Academy of Sciences.

[53]  K. Timmis,et al.  Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis , 2006, Nature Biotechnology.

[54]  Adam Godzik,et al.  Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences , 2006, Bioinform..

[55]  B. Fox,et al.  Crystal structures and functional studies of T4moD, the toluene 4-monooxygenase catalytic effector protein. , 2005, Biochemistry.

[56]  P. Rouvière,et al.  Proposed involvement of a soluble methane monooxygenase homologue in the cyclohexane-dependent growth of a new Brachymonas species. , 2005, Environmental microbiology.

[57]  W. Bentley,et al.  Oxidation of Benzene to Phenol, Catechol, and 1,2,3-Trihydroxybenzene by Toluene 4-Monooxygenase of Pseudomonas mendocina KR1 and Toluene 3-Monooxygenase of Ralstonia pickettii PKO1 , 2004, Applied and Environmental Microbiology.

[58]  Y. Sakai,et al.  PropaneMonooxygenase and NAD+-Dependent Secondary AlcoholDehydrogenase in Propane Metabolism by Gordonia sp.StrainTY-5 , 2003, Journal of bacteriology.

[59]  B. Witholt,et al.  Alkane hydroxylase homologues in Gram-positive strains. , 2002, Environmental microbiology.

[60]  S. Panke,et al.  Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. , 2001, Microbiology.

[61]  M. Lidstrom,et al.  Role of multiple gene copies in particulate methane monooxygenase activity in the methane-oxidizing bacterium Methylococcus capsulatus Bath. , 1999, Microbiology.

[62]  B. Witholt,et al.  DNA sequence determination and functional characterization of the OCT‐plasmid‐encoded alkJKL genes of Pseudomonas oleovorans , 1992, Molecular microbiology.

[63]  S. Harayama,et al.  Primary structure of xylene monooxygenase: similarities to and differences from the alkane hydroxylation system , 1991, Journal of bacteriology.

[64]  G. Salmond,et al.  Molecular analysis of the methane monooxygenase (MMO) gene cluster of Methylosinus trichosporium OB3b , 1991, Molecular microbiology.

[65]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[66]  A. York Environmental microbiology: Marine biogeochemical cycles in a changing world. , 2018, Nature reviews. Microbiology.

[67]  S. Varjani,et al.  Microbial degradation of petroleum hydrocarbons. , 2017, Bioresource technology.

[68]  Robert C. Edgar,et al.  Search and clustering orders of magnitude faster than BLAST , 2010 .